Automatic photo-to-terrain alignment for the annotation of mountain pictures

Lionel Baboud, Martin Čadík, E. Eisemann, H. Seidel
{"title":"Automatic photo-to-terrain alignment for the annotation of mountain pictures","authors":"Lionel Baboud, Martin Čadík, E. Eisemann, H. Seidel","doi":"10.1109/CVPR.2011.5995727","DOIUrl":null,"url":null,"abstract":"We present a system for the annotation and augmentation of mountain photographs. The key issue resides in the registration of a given photograph with a 3D geo-referenced terrain model. Typical outdoor images contain little structural information, particularly mountain scenes whose aspect changes drastically across seasons and varying weather conditions. Existing approaches usually fail on such difficult scenarios. To avoid the burden of manual registration, we propose a novel automatic technique. Given only a viewpoint and FOV estimates, the technique is able to automatically derive the pose of the camera relative to the geometric terrain model. We make use of silhouette edges, which are among most reliable features that can be detected in the targeted situations. Using an edge detection algorithm, our technique then searches for the best match with silhouette edges rendered using the synthetic model. We develop a robust matching metric allowing us to cope with the inevitable noise affecting detected edges (e.g. due to clouds, snow, rocks, forests, or any phenomenon not encoded in the digital model). Once registered against the model, photographs can easily be augmented with annotations (e.g. topographic data, peak names, paths), which would otherwise imply a tedious fusion process. We further illustrate various other applications, such as 3D model-assisted image enhancement, or, inversely, texturing of digital models.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

We present a system for the annotation and augmentation of mountain photographs. The key issue resides in the registration of a given photograph with a 3D geo-referenced terrain model. Typical outdoor images contain little structural information, particularly mountain scenes whose aspect changes drastically across seasons and varying weather conditions. Existing approaches usually fail on such difficult scenarios. To avoid the burden of manual registration, we propose a novel automatic technique. Given only a viewpoint and FOV estimates, the technique is able to automatically derive the pose of the camera relative to the geometric terrain model. We make use of silhouette edges, which are among most reliable features that can be detected in the targeted situations. Using an edge detection algorithm, our technique then searches for the best match with silhouette edges rendered using the synthetic model. We develop a robust matching metric allowing us to cope with the inevitable noise affecting detected edges (e.g. due to clouds, snow, rocks, forests, or any phenomenon not encoded in the digital model). Once registered against the model, photographs can easily be augmented with annotations (e.g. topographic data, peak names, paths), which would otherwise imply a tedious fusion process. We further illustrate various other applications, such as 3D model-assisted image enhancement, or, inversely, texturing of digital models.
自动照片到地形对齐的山地图片注释
提出了一种用于山地照片标注和增强的系统。关键问题在于给定照片与3D地理参考地形模型的配准。典型的户外图像包含很少的结构信息,特别是山景,其外观随着季节和天气条件的变化而急剧变化。现有的方法通常在这种困难的情况下失败。为了避免人工配准带来的负担,我们提出了一种新的自动配准技术。只要给定一个视点和视场估计,该技术就能自动推导出相机相对于几何地形模型的姿态。我们利用轮廓边缘,这是在目标情况下可以检测到的最可靠的特征之一。使用边缘检测算法,我们的技术然后搜索与使用合成模型渲染的轮廓边缘的最佳匹配。我们开发了一个强大的匹配度量,使我们能够应对影响检测边缘的不可避免的噪声(例如,由于云,雪,岩石,森林或任何未在数字模型中编码的现象)。一旦与模型相匹配,照片就可以很容易地通过注释(例如地形数据、峰名、路径)进行扩展,否则这意味着一个繁琐的融合过程。我们进一步说明了各种其他应用,例如3D模型辅助图像增强,或者相反,数字模型的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信