Human-in-the-loop oracle learning for semantic bugs in string processing programs

Charaka Geethal Kapugama, Van-Thuan Pham, A. Aleti, Marcel Böhme
{"title":"Human-in-the-loop oracle learning for semantic bugs in string processing programs","authors":"Charaka Geethal Kapugama, Van-Thuan Pham, A. Aleti, Marcel Böhme","doi":"10.1145/3533767.3534406","DOIUrl":null,"url":null,"abstract":"How can we automatically repair semantic bugs in string-processing programs? A semantic bug is an unexpected program state: The program does not crash (which can be easily detected). Instead, the program processes the input incorrectly. It produces an output which users identify as unexpected. We envision a fully automated debugging process for semantic bugs where a user reports the unexpected behavior for a given input and the machine negotiates the condition under which the program fails. During the negotiation, the machine learns to predict the user's response and in this process learns an automated oracle for semantic bugs. In this paper, we introduce Grammar2Fix, an automated oracle learning and debugging technique for string-processing programs even when the input format is unknown. Grammar2Fix represents the oracle as a regular grammar which is iteratively improved by systematic queries to the user for other inputs that are likely failing. Grammar2Fix implements several heuristics to maximize the oracle quality under a minimal query budget. In our experiments with 3 widely-used repair benchmark sets, Grammar2Fix predicts passing inputs as passing and failing inputs as failing with more than 96% precision and recall, using a median of 42 queries to the user.","PeriodicalId":412271,"journal":{"name":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533767.3534406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

How can we automatically repair semantic bugs in string-processing programs? A semantic bug is an unexpected program state: The program does not crash (which can be easily detected). Instead, the program processes the input incorrectly. It produces an output which users identify as unexpected. We envision a fully automated debugging process for semantic bugs where a user reports the unexpected behavior for a given input and the machine negotiates the condition under which the program fails. During the negotiation, the machine learns to predict the user's response and in this process learns an automated oracle for semantic bugs. In this paper, we introduce Grammar2Fix, an automated oracle learning and debugging technique for string-processing programs even when the input format is unknown. Grammar2Fix represents the oracle as a regular grammar which is iteratively improved by systematic queries to the user for other inputs that are likely failing. Grammar2Fix implements several heuristics to maximize the oracle quality under a minimal query budget. In our experiments with 3 widely-used repair benchmark sets, Grammar2Fix predicts passing inputs as passing and failing inputs as failing with more than 96% precision and recall, using a median of 42 queries to the user.
人在循环oracle学习字符串处理程序中的语义错误
我们如何自动修复字符串处理程序中的语义错误?语义错误是一种意想不到的程序状态:程序不会崩溃(很容易检测到)。相反,程序错误地处理了输入。它产生一个用户认为是意外的输出。我们设想了一个完全自动化的语义错误调试过程,用户报告给定输入的意外行为,机器协商程序失败的条件。在协商过程中,机器学习预测用户的反应,并在此过程中学习语义错误的自动oracle。在本文中,我们介绍Grammar2Fix,这是一种用于字符串处理程序的自动oracle学习和调试技术,即使输入格式未知。Grammar2Fix将oracle表示为常规语法,通过对用户的其他可能失败的输入进行系统查询来迭代改进。Grammar2Fix实现了几种启发式方法,以最小的查询预算最大化oracle质量。在我们使用3个广泛使用的修复基准集的实验中,Grammar2Fix使用对用户的42个查询的中位数,以超过96%的精度和召回率预测传递输入为通过,失败输入为失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信