Self-similar texture characterization using Wigner-Ville distribution

C. Wen, R. Acharya
{"title":"Self-similar texture characterization using Wigner-Ville distribution","authors":"C. Wen, R. Acharya","doi":"10.1109/ICIP.1996.560390","DOIUrl":null,"url":null,"abstract":"Fractals have been successfully used to model \"natural\" shapes and forms. While using the fractal model, the most important procedure is measuring the fractal parameter H (the Hurst coefficient), which is directly related to the fractal dimension. The Wigner-Ville distribution (WVD) is a time-frequency representation with excellent time and frequency resolutions. We propose a one dimensional WVD method to measure the fractal parameter H. Synthetic fractal images and a human tibia image were used to compare the performance of the WVD method to that of the maximum likelihood estimator (MLE) method and the power spectra method.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.560390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Fractals have been successfully used to model "natural" shapes and forms. While using the fractal model, the most important procedure is measuring the fractal parameter H (the Hurst coefficient), which is directly related to the fractal dimension. The Wigner-Ville distribution (WVD) is a time-frequency representation with excellent time and frequency resolutions. We propose a one dimensional WVD method to measure the fractal parameter H. Synthetic fractal images and a human tibia image were used to compare the performance of the WVD method to that of the maximum likelihood estimator (MLE) method and the power spectra method.
基于Wigner-Ville分布的自相似纹理表征
分形已经成功地用于模拟“自然”形状和形式。在使用分形模型时,最重要的步骤是测量分形参数H(赫斯特系数),它与分形维数直接相关。维格纳-维尔分布(WVD)是一种时间-频率表示,具有很好的时间和频率分辨率。我们提出了一种一维WVD方法来测量分形参数h。利用合成分形图像和人体胫骨图像,比较了WVD方法与最大似然估计(MLE)方法和功率谱方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信