L. He, Q. Shi, Lang Wu, Jianqing Sun, Renke He, Yanhua Long, Jiaen Liang
{"title":"The SHNU System for Blizzard Challenge 2020","authors":"L. He, Q. Shi, Lang Wu, Jianqing Sun, Renke He, Yanhua Long, Jiaen Liang","doi":"10.21437/vcc_bc.2020-2","DOIUrl":null,"url":null,"abstract":"This paper introduces the SHNU (team I) speech synthesis system for Blizzard Challenge 2020. Speech data released this year includes two parts: a 9.5-hour Mandarin corpus from a male native speaker and a 3-hour Shanghainese corpus from a female native speaker. Based on these corpora, we built two neural network-based speech synthesis systems to synthesize speech for both tasks. The same system architecture was used for both the Mandarin and Shanghainese tasks. Specifically, our systems include a front-end module, a Tacotron-based spectrogram prediction network and a WaveNet-based neural vocoder. Firstly, a pre-built front-end module was used to generate character sequence and linguistic features from the training text. Then, we applied a Tacotron-based sequence-to-sequence model to generate mel-spectrogram from character sequence. Finally, a WaveNet-based neural vocoder was adopted to reconstruct audio waveform with the mel-spectrogram from Tacotron. Evaluation results demonstrated that our system achieved an extremely good performance on both tasks, which proved the effectiveness of our proposed system.","PeriodicalId":355114,"journal":{"name":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/vcc_bc.2020-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper introduces the SHNU (team I) speech synthesis system for Blizzard Challenge 2020. Speech data released this year includes two parts: a 9.5-hour Mandarin corpus from a male native speaker and a 3-hour Shanghainese corpus from a female native speaker. Based on these corpora, we built two neural network-based speech synthesis systems to synthesize speech for both tasks. The same system architecture was used for both the Mandarin and Shanghainese tasks. Specifically, our systems include a front-end module, a Tacotron-based spectrogram prediction network and a WaveNet-based neural vocoder. Firstly, a pre-built front-end module was used to generate character sequence and linguistic features from the training text. Then, we applied a Tacotron-based sequence-to-sequence model to generate mel-spectrogram from character sequence. Finally, a WaveNet-based neural vocoder was adopted to reconstruct audio waveform with the mel-spectrogram from Tacotron. Evaluation results demonstrated that our system achieved an extremely good performance on both tasks, which proved the effectiveness of our proposed system.