Libpanda

Matt Bunting, R. Bhadani, J. Sprinkle
{"title":"Libpanda","authors":"Matt Bunting, R. Bhadani, J. Sprinkle","doi":"10.1145/3459609.3460529","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPS) generally involve time-critical components due to physical dynamics, therefore necessitating high-performance subsystems. This is also true in data collection scenarios to infer physical phenomena. This paper covers Libpanda as an example of a component that has been designed to address performance issues in CPS implementations. Libpanda is a C++ library that interfaces software with a Comma.ai Panda device. Pandas are used for installation in modern vehicles to read the vehicle CAN bus, providing rich sensor data and limited vehicle control through message injection. The motivation to design lib-panda stems from the lack of performance in Python-based code that runs on inexpensive hardware like a Raspberry Pi. In such situations, Python code would result in utilizing 92% CPU while also dropping around 40% of the CAN packet due to bottlenecks. Without using different tools, inconsistent data collection means a loss of time-based vehicle state interpretation. Libpanda addresses these issues through implementation in a different language and implementation of different design paradigms involving asynchronous calls and multithreading. The Panda also features a GPS module that allows multiple instances to synchronize clocks for large-scale data collection scenarios. Libpanda has been designed with time-synchronization in mind to aid in the measurement of inter-vehicle dynamics. The performance improvements of libpanda have resulted in it becoming an important component in automotive dynamics research that requires a higher technical performance in large-scale experiments.","PeriodicalId":157596,"journal":{"name":"Proceedings of the Workshop on Data-Driven and Intelligent Cyber-Physical Systems","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Data-Driven and Intelligent Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459609.3460529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Cyber-Physical Systems (CPS) generally involve time-critical components due to physical dynamics, therefore necessitating high-performance subsystems. This is also true in data collection scenarios to infer physical phenomena. This paper covers Libpanda as an example of a component that has been designed to address performance issues in CPS implementations. Libpanda is a C++ library that interfaces software with a Comma.ai Panda device. Pandas are used for installation in modern vehicles to read the vehicle CAN bus, providing rich sensor data and limited vehicle control through message injection. The motivation to design lib-panda stems from the lack of performance in Python-based code that runs on inexpensive hardware like a Raspberry Pi. In such situations, Python code would result in utilizing 92% CPU while also dropping around 40% of the CAN packet due to bottlenecks. Without using different tools, inconsistent data collection means a loss of time-based vehicle state interpretation. Libpanda addresses these issues through implementation in a different language and implementation of different design paradigms involving asynchronous calls and multithreading. The Panda also features a GPS module that allows multiple instances to synchronize clocks for large-scale data collection scenarios. Libpanda has been designed with time-synchronization in mind to aid in the measurement of inter-vehicle dynamics. The performance improvements of libpanda have resulted in it becoming an important component in automotive dynamics research that requires a higher technical performance in large-scale experiments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信