Context-Aware Automatic Text Simplification of Health Materials in Low-Resource Domains

Tarek Sakakini, Jong Yoon Lee, Aditya Duri, R. F. Azevedo, V. Sadauskas, Kuangxiao Gu, S. Bhat, D. Morrow, J. Graumlich, Saqib Walayat, M. Hasegawa-Johnson, Thomas S. Huang, Ann M. Willemsen-Dunlap, Donald J. Halpin
{"title":"Context-Aware Automatic Text Simplification of Health Materials in Low-Resource Domains","authors":"Tarek Sakakini, Jong Yoon Lee, Aditya Duri, R. F. Azevedo, V. Sadauskas, Kuangxiao Gu, S. Bhat, D. Morrow, J. Graumlich, Saqib Walayat, M. Hasegawa-Johnson, Thomas S. Huang, Ann M. Willemsen-Dunlap, Donald J. Halpin","doi":"10.18653/v1/2020.louhi-1.13","DOIUrl":null,"url":null,"abstract":"Healthcare systems have increased patients’ exposure to their own health materials to enhance patients’ health levels, but this has been impeded by patients’ lack of understanding of their health material. We address potential barriers to their comprehension by developing a context-aware text simplification system for health material. Given the scarcity of annotated parallel corpora in healthcare domains, we design our system to be independent of a parallel corpus, complementing the availability of data-driven neural methods when such corpora are available. Our system compensates for the lack of direct supervision using a biomedical lexical database: Unified Medical Language System (UMLS). Compared to a competitive prior approach that uses a tool for identifying biomedical concepts and a consumer-directed vocabulary list, we empirically show the enhanced accuracy of our system due to improved handling of ambiguous terms. We also show the enhanced accuracy of our system over directly-supervised neural methods in this low-resource setting. Finally, we show the direct impact of our system on laypeople’s comprehension of health material via a human subjects’ study (n=160).","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.louhi-1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Healthcare systems have increased patients’ exposure to their own health materials to enhance patients’ health levels, but this has been impeded by patients’ lack of understanding of their health material. We address potential barriers to their comprehension by developing a context-aware text simplification system for health material. Given the scarcity of annotated parallel corpora in healthcare domains, we design our system to be independent of a parallel corpus, complementing the availability of data-driven neural methods when such corpora are available. Our system compensates for the lack of direct supervision using a biomedical lexical database: Unified Medical Language System (UMLS). Compared to a competitive prior approach that uses a tool for identifying biomedical concepts and a consumer-directed vocabulary list, we empirically show the enhanced accuracy of our system due to improved handling of ambiguous terms. We also show the enhanced accuracy of our system over directly-supervised neural methods in this low-resource setting. Finally, we show the direct impact of our system on laypeople’s comprehension of health material via a human subjects’ study (n=160).
低资源域卫生资料的上下文感知自动文本简化
卫生保健系统增加了患者对自己的卫生材料的接触,以提高患者的健康水平,但由于患者对自己的卫生材料缺乏了解,这一点受到了阻碍。我们解决潜在的障碍,他们的理解通过开发一个上下文感知文本简化系统的卫生材料。考虑到医疗保健领域中标注的并行语料库的稀缺性,我们将系统设计为独立于并行语料库的系统,当这些语料库可用时,补充数据驱动的神经方法的可用性。我们的系统弥补了缺乏直接监督使用生物医学词汇数据库:统一医学语言系统(UMLS)。与使用识别生物医学概念的工具和消费者导向词汇表的竞争性先前方法相比,我们的经验表明,由于改进了对歧义术语的处理,我们的系统的准确性得到了提高。我们还展示了在这种低资源环境下,我们的系统比直接监督的神经方法的准确性更高。最后,我们通过一项人类受试者研究(n=160)展示了我们的系统对外行人对健康材料理解的直接影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信