A scale invariant keypoints detector

Tao Zhou
{"title":"A scale invariant keypoints detector","authors":"Tao Zhou","doi":"10.1109/SPAC.2014.6982695","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for detecting keypoints invariant to scale changes based on M-wavelet theory. The theory description and detecting process of our approach are presented The comparative evaluation of different detectors shows our approach can provides a competent performance in rotation invariant, scale invariant, illumination invariant and noiseproof. In terms of scale changes, our proposed approach improves keypoint repeatability by 2%~10% compared with scale invariant feature transform (SIFT), speeded up robust features (SURF), Harris-Laplace, Hessian-Laplace.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a novel approach for detecting keypoints invariant to scale changes based on M-wavelet theory. The theory description and detecting process of our approach are presented The comparative evaluation of different detectors shows our approach can provides a competent performance in rotation invariant, scale invariant, illumination invariant and noiseproof. In terms of scale changes, our proposed approach improves keypoint repeatability by 2%~10% compared with scale invariant feature transform (SIFT), speeded up robust features (SURF), Harris-Laplace, Hessian-Laplace.
尺度不变关键点检测器
提出了一种基于m -小波理论的关键点不随尺度变化的检测方法。给出了该方法的理论描述和检测过程,并对不同检测器进行了比较评价,结果表明该方法具有良好的旋转不变性、尺度不变性、光照不变性和噪声不变性。在尺度变化方面,与尺度不变特征变换(SIFT)、加速鲁棒特征变换(SURF)、Harris-Laplace、hessia - laplace等方法相比,关键点可重复性提高2%~10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信