Detection of osteogenesis imperfecta by automated texture analysis

Demetri Terzopoulos, Steven W. Zucker
{"title":"Detection of osteogenesis imperfecta by automated texture analysis","authors":"Demetri Terzopoulos,&nbsp;Steven W. Zucker","doi":"10.1016/0146-664X(82)90082-X","DOIUrl":null,"url":null,"abstract":"<div><p>An automated system for detecting Osteogenesis Imperfecta (OI), an inheritable disorder of human connective tissue, is described. The approach is one of texture analysis, founded on standard statistical recognition of co-occurrence-based texture descriptors. Our contribution is to show that texture descriptors derived from gray-level co-occurrence matrices can be used in conjunction with descriptors derived from generalized co-occurrence matrices of local image features to increase performance. In fact, for the OI problem, our system demonstrates a level of performance which is significantly better than that of medical specialists.</p></div>","PeriodicalId":100313,"journal":{"name":"Computer Graphics and Image Processing","volume":"20 3","pages":"Pages 229-243"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0146-664X(82)90082-X","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0146664X8290082X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An automated system for detecting Osteogenesis Imperfecta (OI), an inheritable disorder of human connective tissue, is described. The approach is one of texture analysis, founded on standard statistical recognition of co-occurrence-based texture descriptors. Our contribution is to show that texture descriptors derived from gray-level co-occurrence matrices can be used in conjunction with descriptors derived from generalized co-occurrence matrices of local image features to increase performance. In fact, for the OI problem, our system demonstrates a level of performance which is significantly better than that of medical specialists.

成骨不全的自动纹理分析检测
描述了一种用于检测成骨不全症(OI)的自动化系统,这是一种人类结缔组织的遗传性疾病。该方法是一种纹理分析方法,建立在基于共发生的纹理描述符的标准统计识别的基础上。我们的贡献是表明,从灰度级共现矩阵派生的纹理描述符可以与从局部图像特征的广义共现矩阵派生的描述符结合使用,以提高性能。事实上,对于成骨不全问题,我们的系统表现出的性能水平明显优于医学专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信