A Feedback Capacity-Achieving Coding Scheme for the (d, ∞)-RLL Input-Constrained Binary Erasure Channel

V. Rameshwar, N. Kashyap
{"title":"A Feedback Capacity-Achieving Coding Scheme for the (d, ∞)-RLL Input-Constrained Binary Erasure Channel","authors":"V. Rameshwar, N. Kashyap","doi":"10.48550/arXiv.2204.06780","DOIUrl":null,"url":null,"abstract":"This paper considers the memoryless input-constrained binary erasure channel (BEC). The channel input constraint is the $(d,\\ \\infty)$-runlength limited (RLL) constraint, which mandates that any pair of successive ls in the input sequence be separated by at least d Os. We consider a scenario where there is causal, noiseless feedback from the decoder. We demonstrate a simple, labelling-based, zero-error feedback coding scheme, which we prove to be feedback capacity-achieving, and, as a by-product, obtain an explicit characterization of the feedback capacity. Our proof is based on showing that the rate of our feedback coding scheme equals an upper bound on the feedback capacity derived using the single-letter bounding techniques of Sabag et al. (2017). Moreoever, using the tools of Thangaraj (2017), we show numerically that there is a gap between the feedback and non-feedback capacities of the $(d,\\ \\infty)$-RLL input constrained BEC, at least for $d=1$, 2.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.06780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the memoryless input-constrained binary erasure channel (BEC). The channel input constraint is the $(d,\ \infty)$-runlength limited (RLL) constraint, which mandates that any pair of successive ls in the input sequence be separated by at least d Os. We consider a scenario where there is causal, noiseless feedback from the decoder. We demonstrate a simple, labelling-based, zero-error feedback coding scheme, which we prove to be feedback capacity-achieving, and, as a by-product, obtain an explicit characterization of the feedback capacity. Our proof is based on showing that the rate of our feedback coding scheme equals an upper bound on the feedback capacity derived using the single-letter bounding techniques of Sabag et al. (2017). Moreoever, using the tools of Thangaraj (2017), we show numerically that there is a gap between the feedback and non-feedback capacities of the $(d,\ \infty)$-RLL input constrained BEC, at least for $d=1$, 2.
(d,∞)-RLL输入约束二进制擦除信道的反馈容量实现编码方案
本文研究无记忆输入约束二进制擦除信道(BEC)。通道输入约束是$(d,\ \infty)$ -runlength limited (RLL)约束,它要求输入序列中任何一对连续的l必须被至少d个o隔开。我们考虑一种场景,其中有来自解码器的因果无噪声反馈。我们展示了一个简单的,基于标记的,零错误的反馈编码方案,我们证明了反馈容量的实现,并且,作为副产品,获得了反馈容量的明确表征。我们的证明是基于表明我们的反馈编码方案的速率等于使用Sabag等人(2017)的单字母边界技术得出的反馈容量的上界。此外,使用Thangaraj(2017)的工具,我们在数值上表明$(d,\ \infty)$ -RLL输入约束BEC的反馈和非反馈能力之间存在差距,至少对于$d=1$, 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信