Gautam Narang, Arjun Narang, Soumya Singh, J. Lempiäinen
{"title":"Use of unobtrusive human-machine interface for rehabilitation of stroke victims through robot assisted mirror therapy","authors":"Gautam Narang, Arjun Narang, Soumya Singh, J. Lempiäinen","doi":"10.1109/TePRA.2013.6556363","DOIUrl":null,"url":null,"abstract":"Stroke is one of the leading causes of long-term disability worldwide. Present techniques employed for rehabilitation of victims suffering from partial paralysis or loss of function, such as mirror therapy, require substantial amount of resources, which may not be readily available. In traditional mirror therapy, patients place a mirror beside the functional limb, blocking their view of the affected limb, creating the illusion that both the limbs are working properly, which enhances recovery by enlisting direct simulation. This paper proposes an alternate robot based concept, named Wear-A-BAN, where the rehabilitative task will be carried out by a normal articulated industrial robot. During the proposed rehabilitative procedure, the patients are made to wear a smart sleeve on the functional limb. Movement of this limb is monitored in real-time, by wireless Body-Area Network (BAN) sensors placed inside the sleeve, and copied over the sagittal plane to the affected limb. This procedure results in considerable savings in terms of money and personnel, as even though this procedure does not make the rehabilitation process autonomous, but one therapist can monitor various patients at a time. The industrial robot used is suitable for this purpose due to safety aspects naturally existing in the robot, is relatively cheap in price, and allows comprehensive 3-D motions of the limb. Also, unlike traditional therapy, this procedure allows actual movement of the affected limb. The sensors can also be used for other applications, such as gaming and daily life personal activity monitoring.","PeriodicalId":102284,"journal":{"name":"2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TePRA.2013.6556363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Stroke is one of the leading causes of long-term disability worldwide. Present techniques employed for rehabilitation of victims suffering from partial paralysis or loss of function, such as mirror therapy, require substantial amount of resources, which may not be readily available. In traditional mirror therapy, patients place a mirror beside the functional limb, blocking their view of the affected limb, creating the illusion that both the limbs are working properly, which enhances recovery by enlisting direct simulation. This paper proposes an alternate robot based concept, named Wear-A-BAN, where the rehabilitative task will be carried out by a normal articulated industrial robot. During the proposed rehabilitative procedure, the patients are made to wear a smart sleeve on the functional limb. Movement of this limb is monitored in real-time, by wireless Body-Area Network (BAN) sensors placed inside the sleeve, and copied over the sagittal plane to the affected limb. This procedure results in considerable savings in terms of money and personnel, as even though this procedure does not make the rehabilitation process autonomous, but one therapist can monitor various patients at a time. The industrial robot used is suitable for this purpose due to safety aspects naturally existing in the robot, is relatively cheap in price, and allows comprehensive 3-D motions of the limb. Also, unlike traditional therapy, this procedure allows actual movement of the affected limb. The sensors can also be used for other applications, such as gaming and daily life personal activity monitoring.