Optimization of parameters for effective Web information retrieval using an evolutionary algorithm

J. Zakos, Ping Zhang, B. Verma
{"title":"Optimization of parameters for effective Web information retrieval using an evolutionary algorithm","authors":"J. Zakos, Ping Zhang, B. Verma","doi":"10.1109/IJCNN.2005.1555896","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach based on the application of an evolutionary algorithm to optimally tune the parameters of a novel technique for effective Web information retrieval. Context matching is a context-based technique for the ad-hoc retrieval of Web documents that relies on a number of inter-related parameters that define the nature of the context it uses. Its aim is to dynamically generate a context-based measure of term significance during retrieval that can be used as an indicator of document relevancy and ultimately contribute to a documents rank score. But the optimal setting of context matching parameters is an important aspect of the technique to ensure effective retrieval. Thus, the goal of this paper is to investigate the use of an evolutionary algorithm for the optimization of context matching parameters and compare its performance to an iterative technique that exhaustively explores combinations of parameters. We show how the most effective settings for parameters are obtained efficiently through the evolutionary algorithm. We also show how context matching, through the use of these optimized parameters, achieves effective retrieval results on benchmark data that are a significant improvement on previously published results.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present an approach based on the application of an evolutionary algorithm to optimally tune the parameters of a novel technique for effective Web information retrieval. Context matching is a context-based technique for the ad-hoc retrieval of Web documents that relies on a number of inter-related parameters that define the nature of the context it uses. Its aim is to dynamically generate a context-based measure of term significance during retrieval that can be used as an indicator of document relevancy and ultimately contribute to a documents rank score. But the optimal setting of context matching parameters is an important aspect of the technique to ensure effective retrieval. Thus, the goal of this paper is to investigate the use of an evolutionary algorithm for the optimization of context matching parameters and compare its performance to an iterative technique that exhaustively explores combinations of parameters. We show how the most effective settings for parameters are obtained efficiently through the evolutionary algorithm. We also show how context matching, through the use of these optimized parameters, achieves effective retrieval results on benchmark data that are a significant improvement on previously published results.
基于进化算法的有效Web信息检索参数优化
在本文中,我们提出了一种基于应用进化算法来优化Web信息检索新技术参数的方法。上下文匹配是一种基于上下文的技术,用于Web文档的临时检索,它依赖于许多相互关联的参数,这些参数定义了它使用的上下文的性质。它的目的是在检索过程中动态地生成基于上下文的术语重要性度量,该度量可以用作文档相关性的指标,并最终促成文档排名得分。而上下文匹配参数的优化设置是保证检索效果的一个重要方面。因此,本文的目标是研究使用进化算法来优化上下文匹配参数,并将其性能与详尽地探索参数组合的迭代技术进行比较。我们展示了如何通过进化算法有效地获得最有效的参数设置。我们还展示了上下文匹配如何通过使用这些优化的参数,在基准数据上获得有效的检索结果,这是对以前发布的结果的重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信