Document Image Retrieval with Local Feature Sequences

Jilin Li, Zhi-Gang Fan, Yadong Wu, Ning Le
{"title":"Document Image Retrieval with Local Feature Sequences","authors":"Jilin Li, Zhi-Gang Fan, Yadong Wu, Ning Le","doi":"10.1109/ICDAR.2009.46","DOIUrl":null,"url":null,"abstract":"In recent years, many document image retrieval algorithms have been proposed. However, most of the current approaches either need good quality images or depend on the page layout structure. This paper presents a fast, accurate and OCR-free image retrieval algorithm using local feature sequences which can describe the intrinsic, unique and page-layout-free characteristics of document images. With a simple preprocessing step, the local feature sequences can be extracted without print-core detection and image registration. Then an efficient coarse-to-fine common substring matching strategy is applied to do local feature sequences matching. Beyond a single matching score, this approach can locate the matched parts word by word. It well handles the challenges including low resolution, different language, rotation and incompleteness and N-up. The encouraging experiment results on a large scale document image database show the retrieval outputs are sufficient good to be used directly as document image identification results.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In recent years, many document image retrieval algorithms have been proposed. However, most of the current approaches either need good quality images or depend on the page layout structure. This paper presents a fast, accurate and OCR-free image retrieval algorithm using local feature sequences which can describe the intrinsic, unique and page-layout-free characteristics of document images. With a simple preprocessing step, the local feature sequences can be extracted without print-core detection and image registration. Then an efficient coarse-to-fine common substring matching strategy is applied to do local feature sequences matching. Beyond a single matching score, this approach can locate the matched parts word by word. It well handles the challenges including low resolution, different language, rotation and incompleteness and N-up. The encouraging experiment results on a large scale document image database show the retrieval outputs are sufficient good to be used directly as document image identification results.
基于局部特征序列的文档图像检索
近年来,人们提出了许多文档图像检索算法。然而,目前的大多数方法要么需要高质量的图像,要么依赖于页面布局结构。本文提出了一种基于局部特征序列的快速、准确、无ocr的图像检索算法,该算法能够描述文档图像固有的、唯一的、无页面布局的特征。通过简单的预处理步骤,可以在不检测打印核心和图像配准的情况下提取局部特征序列。然后采用一种有效的粗到细公共子串匹配策略进行局部特征序列匹配。除了单个匹配分数之外,这种方法还可以逐字定位匹配的部分。它很好地处理了低分辨率、不同语言、旋转和不完整以及N-up等挑战。在大型文档图像数据库上的实验结果表明,检索结果足够好,可以直接用作文档图像识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信