Learning functional embedding of genes governed by pair-wised labels

Jingjun Cao, Zhenglin Wu, Wenting Ye, Haohan Wang
{"title":"Learning functional embedding of genes governed by pair-wised labels","authors":"Jingjun Cao, Zhenglin Wu, Wenting Ye, Haohan Wang","doi":"10.1109/CIAPP.2017.8167247","DOIUrl":null,"url":null,"abstract":"In this work, we build a deep neural network architecture which learns a compact numerical representation of genes supervised by numerous sources of pair-wise information, including Protein-Protein Interaction information and Gene Ontology information. We introduce a new network architecture which can process gene expression data and generate the representation of individual genes while governed by pair-wise information. The learnt representation is aimed to be further used for research of bioinformatics on relevant tasks, and even beyond the information sources from embedding learnt. Within this paper, we evaluate the representation on Protein-Protein Interaction task, and it shows a result which is better than learnt representation from traditional dimension reduction and feature selection methods.","PeriodicalId":187056,"journal":{"name":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIAPP.2017.8167247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work, we build a deep neural network architecture which learns a compact numerical representation of genes supervised by numerous sources of pair-wise information, including Protein-Protein Interaction information and Gene Ontology information. We introduce a new network architecture which can process gene expression data and generate the representation of individual genes while governed by pair-wise information. The learnt representation is aimed to be further used for research of bioinformatics on relevant tasks, and even beyond the information sources from embedding learnt. Within this paper, we evaluate the representation on Protein-Protein Interaction task, and it shows a result which is better than learnt representation from traditional dimension reduction and feature selection methods.
学习由成对标记控制的基因功能嵌入
在这项工作中,我们建立了一个深度神经网络架构,该架构通过大量成对信息来源(包括蛋白质-蛋白质相互作用信息和基因本体信息)来学习基因的紧凑数字表示。我们引入了一种新的网络结构,它可以处理基因表达数据,并在成对信息的控制下生成单个基因的表示。学习表征旨在进一步用于相关任务的生物信息学研究,甚至超越嵌入学习的信息源。在本文中,我们评估了蛋白质-蛋白质相互作用任务的表示,结果表明,它比传统的降维和特征选择方法学习到的表示要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信