Impulsive noise elimination using polynomial iteratively reweighted least squares

E. Kuruoğlu, P. Rayner, W. Fitzgerald
{"title":"Impulsive noise elimination using polynomial iteratively reweighted least squares","authors":"E. Kuruoğlu, P. Rayner, W. Fitzgerald","doi":"10.1109/DSPWS.1996.555532","DOIUrl":null,"url":null,"abstract":"A new nonlinear filtering technique is introduced for the elimination of impulsive noise modelled with a symmetric /spl alpha/-stable (S/spl alpha/S) distribution. The new algorithm, called polynomial iteratively reweighted least squares (PIRLS), employs a Volterra filter the coefficients of which are estimated by minimizing the l/sub p/-norm of the estimation error. The filter, hence constructed, is used to estimate the clean data from the corrupted data. Simulation results obtained for audio data corrupted by synthetic S/spl alpha/S noise indicate that PIRLS is very successful in removing impulsive noise.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new nonlinear filtering technique is introduced for the elimination of impulsive noise modelled with a symmetric /spl alpha/-stable (S/spl alpha/S) distribution. The new algorithm, called polynomial iteratively reweighted least squares (PIRLS), employs a Volterra filter the coefficients of which are estimated by minimizing the l/sub p/-norm of the estimation error. The filter, hence constructed, is used to estimate the clean data from the corrupted data. Simulation results obtained for audio data corrupted by synthetic S/spl alpha/S noise indicate that PIRLS is very successful in removing impulsive noise.
基于多项式迭代加权最小二乘的脉冲噪声消除方法
介绍了一种新的非线性滤波技术,用于消除对称/spl α /-稳定(S/spl α /S)分布的脉冲噪声。新算法称为多项式迭代再加权最小二乘(PIRLS),采用Volterra滤波器,通过最小化估计误差的l/下标p/-范数来估计其系数。因此构造的过滤器用于从损坏的数据中估计干净的数据。对被合成S/spl α /S噪声破坏的音频数据的仿真结果表明,PIRLS能够很好地去除脉冲噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信