Learning the Compositional Nature of Visual Objects

B. Ommer, J. Buhmann
{"title":"Learning the Compositional Nature of Visual Objects","authors":"B. Ommer, J. Buhmann","doi":"10.1109/CVPR.2007.383154","DOIUrl":null,"url":null,"abstract":"The compositional nature of visual objects significantly limits their representation complexity and renders learning of structured object models tractable. Adopting this modeling strategy we both (i) automatically decompose objects into a hierarchy of relevant compositions and we (ii) learn such a compositional representation for each category without supervision. The compositional structure supports feature sharing already on the lowest level of small image patches. Compositions are represented as probability distributions over their constituent parts and the relations between them. The global shape of objects is captured by a graphical model which combines all compositions. Inference based on the underlying statistical model is then employed to obtain a category level object recognition system. Experiments on large standard benchmark datasets underline the competitive recognition performance of this approach and they provide insights into the learned compositional structure of objects.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"27 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

The compositional nature of visual objects significantly limits their representation complexity and renders learning of structured object models tractable. Adopting this modeling strategy we both (i) automatically decompose objects into a hierarchy of relevant compositions and we (ii) learn such a compositional representation for each category without supervision. The compositional structure supports feature sharing already on the lowest level of small image patches. Compositions are represented as probability distributions over their constituent parts and the relations between them. The global shape of objects is captured by a graphical model which combines all compositions. Inference based on the underlying statistical model is then employed to obtain a category level object recognition system. Experiments on large standard benchmark datasets underline the competitive recognition performance of this approach and they provide insights into the learned compositional structure of objects.
学习视觉对象的组成性质
视觉对象的组成特性极大地限制了其表示的复杂性,并使结构化对象模型的学习变得易于处理。采用这种建模策略,我们(i)自动将对象分解为相关组合的层次结构,(ii)在没有监督的情况下为每个类别学习这样的组合表示。该组合结构支持已经在最低级别的小图像补丁上的特征共享。组合用其组成部分及其之间关系的概率分布来表示。物体的整体形状由图形模型捕获,图形模型结合了所有组成部分。然后利用基于底层统计模型的推理得到类别级目标识别系统。在大型标准基准数据集上的实验强调了该方法的竞争性识别性能,并提供了对学习到的对象组成结构的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信