An efficient approximation scheme for data mining tasks

G. Kollios, D. Gunopulos, Nick Koudas, Stefan Berchtold
{"title":"An efficient approximation scheme for data mining tasks","authors":"G. Kollios, D. Gunopulos, Nick Koudas, Stefan Berchtold","doi":"10.1109/ICDE.2001.914858","DOIUrl":null,"url":null,"abstract":"We investigate the use of biased sampling according to the density of the dataset, to speed up the operation of general data mining tasks, such as clustering and outlier detection in large multidimensional datasets. In density biased sampling, the probability that a given point will be included in the sample depends on the local density of the dataset. We propose a general technique for density-biased sampling that can factor in user requirements to sample for properties of interest, and can be tuned for specific data mining tasks. This allows great flexibility and improved accuracy of the results over simple random sampling. We describe our approach in detail, we analytically evaluate it, and show how it can be optimized for approximate clustering and outlier detection. Finally we present a thorough experimental evaluation of the proposed method, applying density-biased sampling on real and synthetic data sets, and employing clustering and outlier detection algorithms, thus highlighting the utility of our approach.","PeriodicalId":431818,"journal":{"name":"Proceedings 17th International Conference on Data Engineering","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2001.914858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We investigate the use of biased sampling according to the density of the dataset, to speed up the operation of general data mining tasks, such as clustering and outlier detection in large multidimensional datasets. In density biased sampling, the probability that a given point will be included in the sample depends on the local density of the dataset. We propose a general technique for density-biased sampling that can factor in user requirements to sample for properties of interest, and can be tuned for specific data mining tasks. This allows great flexibility and improved accuracy of the results over simple random sampling. We describe our approach in detail, we analytically evaluate it, and show how it can be optimized for approximate clustering and outlier detection. Finally we present a thorough experimental evaluation of the proposed method, applying density-biased sampling on real and synthetic data sets, and employing clustering and outlier detection algorithms, thus highlighting the utility of our approach.
数据挖掘任务的有效逼近方案
我们根据数据集的密度研究了偏差抽样的使用,以加快一般数据挖掘任务的操作,如大型多维数据集的聚类和离群点检测。在密度偏倚抽样中,一个给定点被包含在样本中的概率取决于数据集的局部密度。我们提出了一种用于密度偏差采样的通用技术,该技术可以考虑用户对感兴趣的属性进行采样的需求,并且可以针对特定的数据挖掘任务进行调优。与简单的随机抽样相比,这允许极大的灵活性和提高结果的准确性。我们详细描述了我们的方法,对其进行了分析评估,并展示了如何对近似聚类和离群值检测进行优化。最后,我们对所提出的方法进行了彻底的实验评估,在真实和合成数据集上应用密度偏差抽样,并采用聚类和离群值检测算法,从而突出了我们方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信