Digital Twin-Based Fractional Order Controller Optimization for Industrial Robot

Xuan Liu, Pengchong Chen, Ying Luo
{"title":"Digital Twin-Based Fractional Order Controller Optimization for Industrial Robot","authors":"Xuan Liu, Pengchong Chen, Ying Luo","doi":"10.1115/detc2021-72405","DOIUrl":null,"url":null,"abstract":"\n In this paper, a practical and systematic tuning procedure for fractional order controller using particle swarm algorithm (PSO) based on digital twin (DT) system of industrial robot has been developed. The procedure includes a virtual realization of control system based on digital twin concept. Then a particle swarm algorithm is introduced to optimize the five parameters of the cascade fractional order PI-PIλ controller. The optimization procedure using particle swarm algorithm based on digital twin concept is also presented. Finally, the virtual industrial robot model in digital twin is simulated to verify the applicability of the optimization method. The effectiveness of using the cascaded fractional order PI-PIλ controller compared to the cascaded integer order PI-PI controller is illustrated by the simulation results, where the cascaded fractional order PI-PIλ controller responses faster with smaller tracking error over the integer order one.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-72405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a practical and systematic tuning procedure for fractional order controller using particle swarm algorithm (PSO) based on digital twin (DT) system of industrial robot has been developed. The procedure includes a virtual realization of control system based on digital twin concept. Then a particle swarm algorithm is introduced to optimize the five parameters of the cascade fractional order PI-PIλ controller. The optimization procedure using particle swarm algorithm based on digital twin concept is also presented. Finally, the virtual industrial robot model in digital twin is simulated to verify the applicability of the optimization method. The effectiveness of using the cascaded fractional order PI-PIλ controller compared to the cascaded integer order PI-PI controller is illustrated by the simulation results, where the cascaded fractional order PI-PIλ controller responses faster with smaller tracking error over the integer order one.
基于数字孪生的工业机器人分数阶控制器优化
本文提出了一种基于数字孪生(DT)系统的工业机器人分数阶控制器的粒子群算法(PSO)系统整定方法。该过程包括基于数字孪生概念的控制系统的虚拟实现。然后引入粒子群算法对级联分数阶PI-PIλ控制器的5个参数进行优化。给出了基于数字孪生概念的粒子群算法的优化过程。最后,对数字孪生中的虚拟工业机器人模型进行了仿真,验证了优化方法的适用性。与级联整数阶PI-PI控制器相比,使用级联分数阶PI-PI控制器的有效性由仿真结果说明,其中级联分数阶PI-PI控制器响应更快,跟踪误差小于整数阶1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信