Eye movements and human face perception: An holistic analysis and proficiency classification based on frontal 2D face images

V. P. L. Varela, Estela Ribeiro, Pedro A. S. S. Orona, C. Thomaz
{"title":"Eye movements and human face perception: An holistic analysis and proficiency classification based on frontal 2D face images","authors":"V. P. L. Varela, Estela Ribeiro, Pedro A. S. S. Orona, C. Thomaz","doi":"10.5753/ENIAC.2018.4403","DOIUrl":null,"url":null,"abstract":"Human faces convey a collection of information, such as gender, identity, and emotional states. Therefore, understanding the differences between volunteers’ eye movements on benchmark tests of face recognition and perception can explicitly indicate the most discriminating regions to improve performance in this visual cognitive task. The aim of this work is to qualify and classify these eye strategies using multivariate statistics and machine learning techniques, achieving up to 94.8% accuracy. Our experimental results show that volunteers have focused their visual attention, on average, at the eyes, but those with superior performance in the tests carried out have looked at the nose region more closely.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"32 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Human faces convey a collection of information, such as gender, identity, and emotional states. Therefore, understanding the differences between volunteers’ eye movements on benchmark tests of face recognition and perception can explicitly indicate the most discriminating regions to improve performance in this visual cognitive task. The aim of this work is to qualify and classify these eye strategies using multivariate statistics and machine learning techniques, achieving up to 94.8% accuracy. Our experimental results show that volunteers have focused their visual attention, on average, at the eyes, but those with superior performance in the tests carried out have looked at the nose region more closely.
眼动与人脸感知:基于正面二维人脸图像的整体分析与熟练度分类
人脸传递着一系列信息,比如性别、身份和情绪状态。因此,了解志愿者在人脸识别和感知基准测试中眼球运动的差异,可以明确指出最具辨别能力的区域,从而提高在这一视觉认知任务中的表现。这项工作的目的是使用多元统计和机器学习技术对这些眼睛策略进行定性和分类,准确率高达94.8%。我们的实验结果表明,志愿者的视觉注意力平均集中在眼睛上,但那些在测试中表现优异的人更仔细地观察了鼻子区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信