Parameterizing higher-order processes on names and processes

Xian Xu
{"title":"Parameterizing higher-order processes on names and processes","authors":"Xian Xu","doi":"10.1051/ita/2019005","DOIUrl":null,"url":null,"abstract":"Parameterization extends higher-order processes with the capability of abstraction and application (like those in lambda-calculus). As is well-known, this extension is strict, meaning that higher-order processes equipped with parameterization are strictly more expressive than those without parameterization. This paper studies strictly higher-order processes (i.e., no name-passing) with two kinds of parameterization: one on names and the other on processes themselves. We present two main results. One is that in presence of parameterization, higher-order processes can interpret first-order (name-passing) processes in a quite elegant fashion, in contrast to the fact that higher-order processes without parameterization cannot encode first-order processes at all. We present two such encodings and analyze their properties in depth, particularly full abstraction. In the other result, we provide a simpler characterization of the standard context bisimilarity for higher-order processes with parameterization, in terms of the normal bisimilarity that stems from the well-known normal characterization for higher-order calculus. As a spinoff, we show that the bisimulation up-to context technique is sound in the higher-order setting with parameterization.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2019005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Parameterization extends higher-order processes with the capability of abstraction and application (like those in lambda-calculus). As is well-known, this extension is strict, meaning that higher-order processes equipped with parameterization are strictly more expressive than those without parameterization. This paper studies strictly higher-order processes (i.e., no name-passing) with two kinds of parameterization: one on names and the other on processes themselves. We present two main results. One is that in presence of parameterization, higher-order processes can interpret first-order (name-passing) processes in a quite elegant fashion, in contrast to the fact that higher-order processes without parameterization cannot encode first-order processes at all. We present two such encodings and analyze their properties in depth, particularly full abstraction. In the other result, we provide a simpler characterization of the standard context bisimilarity for higher-order processes with parameterization, in terms of the normal bisimilarity that stems from the well-known normal characterization for higher-order calculus. As a spinoff, we show that the bisimulation up-to context technique is sound in the higher-order setting with parameterization.
在名称和进程上参数化高阶进程
参数化扩展了具有抽象和应用能力的高阶过程(如lambda-calculus中的那些)。众所周知,这个扩展是严格的,这意味着配备参数化的高阶过程严格地比没有参数化的过程更具表现力。本文研究了具有两种参数化的严格高阶过程(即无名称传递):一种是名称参数化,另一种是过程本身参数化。我们提出了两个主要结果。一是在参数化的情况下,高阶过程可以以一种相当优雅的方式解释一阶(名称传递)过程,而没有参数化的高阶过程根本无法对一阶过程进行编码。我们提出了两种这样的编码,并深入分析了它们的性质,特别是完全抽象。在另一个结果中,我们提供了一个参数化高阶过程的标准上下文双相似性的更简单的表征,根据来自高阶微积分的众所周知的正规表征的正规双相似性。作为衍生,我们证明了基于上下文的双模拟技术在具有参数化的高阶设置中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信