In-plane and surface emitting high performance THz pillar type photonic crystal lasers with complete photonic bandgaps

Hua Zhang, G. Scalari, R. Houdré, J. Faist
{"title":"In-plane and surface emitting high performance THz pillar type photonic crystal lasers with complete photonic bandgaps","authors":"Hua Zhang, G. Scalari, R. Houdré, J. Faist","doi":"10.1109/CLEOE-EQEC.2009.5192585","DOIUrl":null,"url":null,"abstract":"Photonic crystal (PhC) band engineering has been shown to be a method of choice to control the emitting properties of quantum cascade lasers (QCLs) [1,2] at THz frequency [3-6]. For PhC distribute-feedback (DFB) type lasers, the low group velocity is responsible for a significant gain enhancement, proportional to the group index [7]. The double plasmon waveguide, in which the TM polarized light is confined in the active region between two metallic layers, enables the fabrication of pillar structures possessing multiple complete photonic bandgaps (PBG) with very low intrinsic losses. In this work, we will present and discuss that pillar type PhC provides, along with spectral control of the light, lower losses, broader single mode tuneability and higher operating temperature than a state of the art fabricated FP cavity [3]. Accompanied with these in-plane emitting properties at 3 THz, we will show that the laser emission can be achieved in surface direction at 1.5 THz with PhC band structure engineering.","PeriodicalId":346720,"journal":{"name":"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2009.5192585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic crystal (PhC) band engineering has been shown to be a method of choice to control the emitting properties of quantum cascade lasers (QCLs) [1,2] at THz frequency [3-6]. For PhC distribute-feedback (DFB) type lasers, the low group velocity is responsible for a significant gain enhancement, proportional to the group index [7]. The double plasmon waveguide, in which the TM polarized light is confined in the active region between two metallic layers, enables the fabrication of pillar structures possessing multiple complete photonic bandgaps (PBG) with very low intrinsic losses. In this work, we will present and discuss that pillar type PhC provides, along with spectral control of the light, lower losses, broader single mode tuneability and higher operating temperature than a state of the art fabricated FP cavity [3]. Accompanied with these in-plane emitting properties at 3 THz, we will show that the laser emission can be achieved in surface direction at 1.5 THz with PhC band structure engineering.
具有完全光子带隙的面内和面发射高性能太赫兹柱型光子晶体激光器
光子晶体(PhC)波段工程已被证明是控制量子级联激光器(qcl)在太赫兹频率下发射特性的一种方法[1,2][3-6]。对于PhC分布反馈(DFB)型激光器,低群速度是显著增益增强的原因,与群指数[7]成正比。双等离激元波导中,TM偏振光被限制在两个金属层之间的有源区域,使得具有多个完整光子带隙(PBG)的柱状结构具有非常低的固有损耗。在这项工作中,我们将介绍和讨论柱型PhC提供的和光的光谱控制,更低的损耗,更宽的单模可调性和更高的工作温度,而不是最先进的制造FP腔[3]。伴随着这些在3太赫兹的面内发射特性,我们将证明激光可以在1.5太赫兹的表面方向上通过PhC带结构工程实现发射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信