Exploring the Power of Visual Features for the Recommendation of Movies

Mohammad Hossein Rimaz, Mehdi Elahi, Farshad Bakhshandegan Moghaddam, C. Trattner, Reza Hosseini, M. Tkalcic
{"title":"Exploring the Power of Visual Features for the Recommendation of Movies","authors":"Mohammad Hossein Rimaz, Mehdi Elahi, Farshad Bakhshandegan Moghaddam, C. Trattner, Reza Hosseini, M. Tkalcic","doi":"10.1145/3320435.3320470","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the potential of using visual features in movie Recommender Systems. This type of content features can be extracted automatically without any human involvement and have been shown to be very effective in representing the visual content of movies. We have performed the following experiments, using a large dataset of movie trailers: (i) Experiment A: an exploratory analysis as an initial investigation on the data, and (ii) Experiment B: building a movie recommender based on the visual features and evaluating the performance. The observed results have shown promising potential of visual features in representing the movies and the excellency of recommendation based on these features.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3320470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we explore the potential of using visual features in movie Recommender Systems. This type of content features can be extracted automatically without any human involvement and have been shown to be very effective in representing the visual content of movies. We have performed the following experiments, using a large dataset of movie trailers: (i) Experiment A: an exploratory analysis as an initial investigation on the data, and (ii) Experiment B: building a movie recommender based on the visual features and evaluating the performance. The observed results have shown promising potential of visual features in representing the movies and the excellency of recommendation based on these features.
探索视觉特征在电影推荐中的作用
在本文中,我们探讨了在电影推荐系统中使用视觉特征的潜力。这种类型的内容特征可以在没有任何人工参与的情况下自动提取,并且已被证明在表示电影的视觉内容方面非常有效。我们使用大型电影预告片数据集进行了以下实验:(i)实验a:对数据进行探索性分析作为初步调查;(ii)实验B:基于视觉特征构建电影推荐并评估其性能。观察结果显示了视觉特征在电影表现方面的巨大潜力,以及基于这些特征的推荐的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信