Efficient image segmentation of RGB-D images

Islam I. Fouad, S. Rady, M. Mostafa
{"title":"Efficient image segmentation of RGB-D images","authors":"Islam I. Fouad, S. Rady, M. Mostafa","doi":"10.1109/ICCES.2017.8275331","DOIUrl":null,"url":null,"abstract":"Image segmentation is a fundamental problem in computer vision. With the current advent of depth sensors, it is gradually becoming a research focus on how to utilize the depth information to improve image segmentation. This paper proposes an automatic RGB-D image segmentation method in which the depth and RGB images are separately segmented and the result is combined, hence obtaining better segmentation results. The proposed segmentation is applied in five phases: 1) Edge detection, 2) Morphological operations employed for enhancing the edge detection result. 3) Connected components' processing applied for labeling each region in the image, 4) Extraction for the missing components and merging with result in step 3. (The previous four steps are applied on the RGB image). 5) The result of depth and RGB segmentation are finally combined. Experiments carried on ‘NYU Depth Dataset V2’ which contains RGB and depth images, have proven the efficiency of the proposed segmentation method.","PeriodicalId":170532,"journal":{"name":"2017 12th International Conference on Computer Engineering and Systems (ICCES)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2017.8275331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image segmentation is a fundamental problem in computer vision. With the current advent of depth sensors, it is gradually becoming a research focus on how to utilize the depth information to improve image segmentation. This paper proposes an automatic RGB-D image segmentation method in which the depth and RGB images are separately segmented and the result is combined, hence obtaining better segmentation results. The proposed segmentation is applied in five phases: 1) Edge detection, 2) Morphological operations employed for enhancing the edge detection result. 3) Connected components' processing applied for labeling each region in the image, 4) Extraction for the missing components and merging with result in step 3. (The previous four steps are applied on the RGB image). 5) The result of depth and RGB segmentation are finally combined. Experiments carried on ‘NYU Depth Dataset V2’ which contains RGB and depth images, have proven the efficiency of the proposed segmentation method.
RGB-D图像的高效分割
图像分割是计算机视觉中的一个基本问题。随着深度传感器的出现,如何利用深度信息来改进图像分割逐渐成为研究热点。本文提出了一种自动分割RGB- d图像的方法,该方法将深度和RGB图像分别分割,并将分割结果进行组合,从而获得更好的分割效果。该分割方法分为五个阶段:1)边缘检测;2)形态学操作增强边缘检测结果。3)连通分量处理用于标记图像中的每个区域,4)步骤3提取缺失分量并与结果合并。(前面的四个步骤应用于RGB图像)。5)最后将深度和RGB分割的结果结合起来。在包含RGB和深度图像的“NYU Depth Dataset V2”上进行的实验证明了该分割方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信