{"title":"Power plant fault monitoring using Recursive Principal Component Analysis RPCA","authors":"Alberto Sánchez, Mauricio Redrobán, Omar Aguirre","doi":"10.1109/ROPEC.2016.7830609","DOIUrl":null,"url":null,"abstract":"Recursive Principal Components Analysis is explored as a method to identify and classify fault sources in a 12MW steam dual fuel power plant. The algorithm assessment is performed off-line by using data of relevant plant wide-information. A simple contributions matrix based in normalized data is proposed to diagnose plant faults. Results indicate it is possible to detect, classify and possibly even predict sources of plant failure.","PeriodicalId":166098,"journal":{"name":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2016.7830609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recursive Principal Components Analysis is explored as a method to identify and classify fault sources in a 12MW steam dual fuel power plant. The algorithm assessment is performed off-line by using data of relevant plant wide-information. A simple contributions matrix based in normalized data is proposed to diagnose plant faults. Results indicate it is possible to detect, classify and possibly even predict sources of plant failure.