Best Basis Selection Using Singular Value Decomposition

Esakkirajan Sankaralingam, Veerakumar Thangaraj, P. Navaneethan
{"title":"Best Basis Selection Using Singular Value Decomposition","authors":"Esakkirajan Sankaralingam, Veerakumar Thangaraj, P. Navaneethan","doi":"10.1109/ICAPR.2009.13","DOIUrl":null,"url":null,"abstract":"This paper presents a new idea of best basis selection through singular value decomposition. Wavelet and Wavelet Packet Transform are efficient tools to represent the image. Wavelet Packet Transform is a generalization of wavelet transform which is more adaptive than the wavelet transform because it offers a rich library of bases from which the best one can be chosen for a certain class of images with a specified cost function. Wavelet packet decomposition yields a redundant representation of the image. The problem of wavelet packet image coding consists of considering all possible wavelet packet bases in the library, and choosing the one that gives the best coding performance. In this work, Singular Value Decomposition is used as a tool to select the best basis. Experimental results have demonstrated the validity of the approach.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a new idea of best basis selection through singular value decomposition. Wavelet and Wavelet Packet Transform are efficient tools to represent the image. Wavelet Packet Transform is a generalization of wavelet transform which is more adaptive than the wavelet transform because it offers a rich library of bases from which the best one can be chosen for a certain class of images with a specified cost function. Wavelet packet decomposition yields a redundant representation of the image. The problem of wavelet packet image coding consists of considering all possible wavelet packet bases in the library, and choosing the one that gives the best coding performance. In this work, Singular Value Decomposition is used as a tool to select the best basis. Experimental results have demonstrated the validity of the approach.
基于奇异值分解的最佳基选择
提出了一种基于奇异值分解的最优基选择的新思路。小波变换和小波包变换是表示图像的有效工具。小波包变换是对小波变换的一种推广,它提供了丰富的基库,可以对具有特定代价函数的某类图像选择最优基库,具有比小波变换更强的自适应能力。小波包分解产生图像的冗余表示。小波包图像编码问题包括考虑库中所有可能的小波包基,并选择编码性能最好的小波包基。在这项工作中,使用奇异值分解作为选择最佳基的工具。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信