Iterative Pruning-based Model Compression for Pose Estimation on Resource-constrained Devices

Sung Hyun Choi, Wonje Choi, Youngseok Lee, Honguk Woo
{"title":"Iterative Pruning-based Model Compression for Pose Estimation on Resource-constrained Devices","authors":"Sung Hyun Choi, Wonje Choi, Youngseok Lee, Honguk Woo","doi":"10.1145/3523111.3523128","DOIUrl":null,"url":null,"abstract":"In this work, we propose a pruning-based model compression scheme, aiming at achieving an efficient model that has strength in both accuracy and inference time on an embedded device environment with limited resources. The proposed scheme consists of (1) pruning profiling and (2) iterative pruning via knowledge distillation. With the scheme, we develop a resource-efficient 2D pose estimation model using HRNet and evaluate the model on NVIDA JetsonNano with the Microsoft COCO keypoint dataset. Specifically, our compressed model obtains the fast pose estimation of 20.3 FPS on NVIDA JetsonNano, while maintaining a high accuracy of 74.1 AP. Compared to the conventional HRNet model without compression, the proposed compression technique achieves 33 % improvement in FPS with only 0.4 % degradation in AP.","PeriodicalId":185161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523111.3523128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a pruning-based model compression scheme, aiming at achieving an efficient model that has strength in both accuracy and inference time on an embedded device environment with limited resources. The proposed scheme consists of (1) pruning profiling and (2) iterative pruning via knowledge distillation. With the scheme, we develop a resource-efficient 2D pose estimation model using HRNet and evaluate the model on NVIDA JetsonNano with the Microsoft COCO keypoint dataset. Specifically, our compressed model obtains the fast pose estimation of 20.3 FPS on NVIDA JetsonNano, while maintaining a high accuracy of 74.1 AP. Compared to the conventional HRNet model without compression, the proposed compression technique achieves 33 % improvement in FPS with only 0.4 % degradation in AP.
基于迭代剪枝的资源受限设备姿态估计模型压缩
在这项工作中,我们提出了一种基于剪枝的模型压缩方案,旨在实现在资源有限的嵌入式设备环境下具有精度和推理时间优势的高效模型。该方案包括(1)剪枝剖析和(2)基于知识蒸馏的迭代剪枝。利用该方案,利用HRNet开发了一个资源高效的二维姿态估计模型,并在nvidia JetsonNano上使用Microsoft COCO关键点数据集对模型进行了评估。具体来说,我们的压缩模型在NVIDA JetsonNano上获得了20.3 FPS的快速姿态估计,同时保持了74.1 AP的高精度。与未压缩的传统HRNet模型相比,所提出的压缩技术在FPS方面提高了33%,而AP方面仅下降了0.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信