Adjusting fuzzy weights in fuzzy neural nets

T. Feuring, J. Buckley, Y. Hayashi
{"title":"Adjusting fuzzy weights in fuzzy neural nets","authors":"T. Feuring, J. Buckley, Y. Hayashi","doi":"10.1109/KES.1998.725940","DOIUrl":null,"url":null,"abstract":"In order to train fuzzy neural nets fuzzy number weights have to be adjusted. Because fuzzy arithmetic automatically leads to monotonic increasing outputs a direct fuzzification of the backpropagation method does not work. Therefore, the focus is on other strategies like evolutionary algorithms. In this paper we suggest a backpropagation based method of adjusting the weights. Furthermore we can show that for the proposed method convergence can be guaranteed.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In order to train fuzzy neural nets fuzzy number weights have to be adjusted. Because fuzzy arithmetic automatically leads to monotonic increasing outputs a direct fuzzification of the backpropagation method does not work. Therefore, the focus is on other strategies like evolutionary algorithms. In this paper we suggest a backpropagation based method of adjusting the weights. Furthermore we can show that for the proposed method convergence can be guaranteed.
模糊神经网络模糊权值的调整
为了训练模糊神经网络,必须调整模糊数的权重。由于模糊算法会自动导致输出单调递增,因此直接模糊化反向传播方法是行不通的。因此,重点是其他策略,如进化算法。本文提出了一种基于反向传播的权重调整方法。进一步证明了该方法的收敛性是有保证的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信