Conjectural permutation decoding of some AG codes

D. Joyner
{"title":"Conjectural permutation decoding of some AG codes","authors":"D. Joyner","doi":"10.1145/1080368.1080374","DOIUrl":null,"url":null,"abstract":"We study the action of a finite group on the Riemann-Roch space of certain divisors on a specific hyperelliptic curve <i>X</i> defined over a finite field with \"large\" automorphism group <i>G</i>. If <i>D</i> and <i>E</i> = <i>P</i><inf>l</inf> + ... + <i>P<inf>n</inf></i> are <i>G</i>-equivariant divisors on <i>X</i> (<i>P<inf>i</inf></i> ∈ <i>X</i>(<i>F</i>)) then <i>G</i> acts on associated AG code <i>C</i> = <i>C</i>(<i>D,E</i>) by permuting coordinates. This note discusses the permutation decoding of these AG codes. The main \"results\" are conjectures regarding the complexity of the permutation decoding of these hyperelliptic codes. The open source GAP error-correcting codes package GUAVA is used to compute examples.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1080368.1080374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We study the action of a finite group on the Riemann-Roch space of certain divisors on a specific hyperelliptic curve X defined over a finite field with "large" automorphism group G. If D and E = Pl + ... + Pn are G-equivariant divisors on X (PiX(F)) then G acts on associated AG code C = C(D,E) by permuting coordinates. This note discusses the permutation decoding of these AG codes. The main "results" are conjectures regarding the complexity of the permutation decoding of these hyperelliptic codes. The open source GAP error-correcting codes package GUAVA is used to compute examples.
一些AG码的猜想排列译码
研究了在具有“大”自同构群g的有限域上定义的特定超椭圆曲线X上若干因子的Riemann-Roch空间上有限群的作用。如果D和E = Pl +…+ Pn是X(Pi∈X(F))上的G等变因子,则G通过置换坐标作用于相关AG码C = C(D,E)。本文讨论了这些AG码的排列解码。主要的“结果”是关于这些超椭圆码的排列解码的复杂性的猜想。使用开源的GAP纠错码包GUAVA来计算示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信