Dynamic feature and signature selection for robust tracking of multiple objects

V. Szabo, C. Rekeczky
{"title":"Dynamic feature and signature selection for robust tracking of multiple objects","authors":"V. Szabo, C. Rekeczky","doi":"10.1109/CNNA.2010.5430270","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to introduce a new tracking framework, which exploits dynamic feature and signature selection techniques for data association models. It performs robust multiple object tracking in a noisy, cluttered environment with closely spaced targets. This method extends the back-end processing capabilities of tracking systems by creating a hierarchy between the parallelly extracted features. These features are dynamically selected based on spatio-temporal consistency weight function, which maximizes the robustness of data association, and reduces the overall complexity of the algorithm.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"552 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to introduce a new tracking framework, which exploits dynamic feature and signature selection techniques for data association models. It performs robust multiple object tracking in a noisy, cluttered environment with closely spaced targets. This method extends the back-end processing capabilities of tracking systems by creating a hierarchy between the parallelly extracted features. These features are dynamically selected based on spatio-temporal consistency weight function, which maximizes the robustness of data association, and reduces the overall complexity of the algorithm.
多目标鲁棒跟踪的动态特征与签名选择
本文的目标是引入一种新的跟踪框架,该框架利用数据关联模型的动态特征和签名选择技术。它在一个嘈杂、杂乱的环境中执行鲁棒的多目标跟踪。该方法通过在并行提取的特征之间创建层次结构,扩展了跟踪系统的后端处理能力。基于时空一致性权重函数动态选择这些特征,使数据关联的鲁棒性最大化,降低了算法的整体复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信