{"title":"A rank sequence method for detecting black hole attack in ad hoc network","authors":"Xiong Kai, Yin Mingyong, Li Wenkang, Jiang Hong","doi":"10.1109/ICAIOT.2015.7111559","DOIUrl":null,"url":null,"abstract":"This paper discusses one of the route security problems called the black hole attack. In the network, we can capture some AODV route tables to gain a rank sequences by using the FP-Growth, which is a data association rule mining. We choose the rank sequences for detecting the malicious node because the rank sequences are not sensitive to the noise interfered. A suspicious set consists of nodes which are selected by whether the rank of a node is changed in the sequence. Then, we use the DE-Cusum to distinguish the black hole route and normal one in the suspicious set. In this paper, the FP-Growth reflects an idea which is about reducing data dimensions. This algorithm excludes many normal nodes before the DE-Cusum detection because the normal node has a stable rank in a sequence. In the simulation, we use the NS2 to build a black hole attack scenario with 11 nodes. Simulation results show that the proposed algorithm can reduce much vain detection.","PeriodicalId":310429,"journal":{"name":"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIOT.2015.7111559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper discusses one of the route security problems called the black hole attack. In the network, we can capture some AODV route tables to gain a rank sequences by using the FP-Growth, which is a data association rule mining. We choose the rank sequences for detecting the malicious node because the rank sequences are not sensitive to the noise interfered. A suspicious set consists of nodes which are selected by whether the rank of a node is changed in the sequence. Then, we use the DE-Cusum to distinguish the black hole route and normal one in the suspicious set. In this paper, the FP-Growth reflects an idea which is about reducing data dimensions. This algorithm excludes many normal nodes before the DE-Cusum detection because the normal node has a stable rank in a sequence. In the simulation, we use the NS2 to build a black hole attack scenario with 11 nodes. Simulation results show that the proposed algorithm can reduce much vain detection.