A Method of the Feature Selection in Hierarchical Text Classification Based on the Category Discrimination and Position Information

Jiapeng Song, Pengzhou Zhang, Sijun Qin, Junpeng Gong
{"title":"A Method of the Feature Selection in Hierarchical Text Classification Based on the Category Discrimination and Position Information","authors":"Jiapeng Song, Pengzhou Zhang, Sijun Qin, Junpeng Gong","doi":"10.1109/ICIICII.2015.116","DOIUrl":null,"url":null,"abstract":"Feature dimension reduction is an important part in text categorization, and it even becomes more important for child classification in hierarchical text classification. It is presented that Chinese text feature selection method based on category distinction and feature location information in this paper. Experimental results show that the proposed method has a higher precision and recall rate than the others. Therefore the effect of the feature selection is better.","PeriodicalId":349920,"journal":{"name":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICII.2015.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Feature dimension reduction is an important part in text categorization, and it even becomes more important for child classification in hierarchical text classification. It is presented that Chinese text feature selection method based on category distinction and feature location information in this paper. Experimental results show that the proposed method has a higher precision and recall rate than the others. Therefore the effect of the feature selection is better.
一种基于类别识别和位置信息的分层文本分类特征选择方法
特征降维是文本分类的重要组成部分,在层次文本分类中,特征降维对子分类更是重要。提出了一种基于类别区分和特征位置信息的中文文本特征选择方法。实验结果表明,该方法具有较高的查全率和查准率。因此,特征选择的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信