Cheirality in epipolar geometry

Tomáš Werner, T. Pajdla
{"title":"Cheirality in epipolar geometry","authors":"Tomáš Werner, T. Pajdla","doi":"10.1109/ICCV.2001.937564","DOIUrl":null,"url":null,"abstract":"The image points in two images satisfy epipolar constraint. However, not all sets of points satisfying epipolar constraint correspond to any real geometry because there can exist no cameras and scene points projecting to given image points such that all image points have positive depth. Using the cheirability theory due to Hartley and previous work an oriented projective geometry, we give necessary and sufficient conditions for an image point set to correspond to any real geometry. For images from conventional cameras, this condition is simple and given in terms of epipolar lines and epipoles. Surprising, this is not sufficient for central panoramic cameras. Apart from giving the insight to epipolar geometry, among the applications are reducing the search space and ruling out impossible matches in stereo, and ruling out impossible solutions for a fundamental matrix computed from seven points.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The image points in two images satisfy epipolar constraint. However, not all sets of points satisfying epipolar constraint correspond to any real geometry because there can exist no cameras and scene points projecting to given image points such that all image points have positive depth. Using the cheirability theory due to Hartley and previous work an oriented projective geometry, we give necessary and sufficient conditions for an image point set to correspond to any real geometry. For images from conventional cameras, this condition is simple and given in terms of epipolar lines and epipoles. Surprising, this is not sufficient for central panoramic cameras. Apart from giving the insight to epipolar geometry, among the applications are reducing the search space and ruling out impossible matches in stereo, and ruling out impossible solutions for a fundamental matrix computed from seven points.
极极几何中的正义性
两幅图像中的图像点满足极面约束。然而,并不是所有满足极外约束的点都对应于任何真实的几何形状,因为不存在投影到给定图像点的摄像机和场景点,使得所有图像点都具有正深度。利用Hartley和前人关于有向射影几何的可分性理论,给出了像点集对应于任何实几何的充分必要条件。对于来自传统相机的图像,这个条件很简单,并且是根据极线和极线给出的。令人惊讶的是,这对中央全景相机来说是不够的。除了提供对极几何的洞察力之外,应用程序还包括减少搜索空间和排除立体中的不可能匹配,以及排除从七个点计算的基本矩阵的不可能解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信