Toeplitz operators in polyanalytic Bergman type spaces

G. Rozenblum, N. Vasilevski
{"title":"Toeplitz operators in polyanalytic Bergman\n type spaces","authors":"G. Rozenblum, N. Vasilevski","doi":"10.1090/CONM/733/14747","DOIUrl":null,"url":null,"abstract":"We consider Toeplitz operators in Bergman and Fock type spaces of polyanalytic $L^2\\textup{-}$functions on the disk or on the half-plane with respect to the Lebesgue measure (resp., on $\\mathbb{C}$ with the plane Gaussian measure). The structure involving creation and annihilation operators, similar to the classical one present for the Landau Hamiltonian, enables us to reduce Toeplitz operators in true polyanalytic spaces to the ones in the usual Bergman type spaces, however with distributional symbols. This reduction leads to describing a number of properties of the operators in the title, which may differ from the properties of the usual Bergman-Toeplitz operators.","PeriodicalId":432671,"journal":{"name":"Functional Analysis and Geometry","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/733/14747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider Toeplitz operators in Bergman and Fock type spaces of polyanalytic $L^2\textup{-}$functions on the disk or on the half-plane with respect to the Lebesgue measure (resp., on $\mathbb{C}$ with the plane Gaussian measure). The structure involving creation and annihilation operators, similar to the classical one present for the Landau Hamiltonian, enables us to reduce Toeplitz operators in true polyanalytic spaces to the ones in the usual Bergman type spaces, however with distributional symbols. This reduction leads to describing a number of properties of the operators in the title, which may differ from the properties of the usual Bergman-Toeplitz operators.
多解析Bergman型空间中的Toeplitz算子
我们考虑了关于Lebesgue测度的盘上或半平面上多元解析函数$L^2\textup{-}$的Bergman和Fock型空间中的Toeplitz算子。,在$\mathbb{C}$上使用平面高斯测度)。这种包含产生算子和湮灭算子的结构,类似于经典的朗道哈密顿算子,使我们能够将真多解析空间中的Toeplitz算子化简为通常的Bergman型空间中的Toeplitz算子,但是带有分布符号。这种简化导致描述标题中算子的一些性质,这些性质可能与通常的Bergman-Toeplitz算子的性质不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信