AffinityFinder: A System for Deriving Hidden Affinity Relationships on Twitter Utilizing Sentiment Analysis

A. Rezgui, Daniel Fahey, Ian Smith
{"title":"AffinityFinder: A System for Deriving Hidden Affinity Relationships on Twitter Utilizing Sentiment Analysis","authors":"A. Rezgui, Daniel Fahey, Ian Smith","doi":"10.1109/W-FiCloud.2016.52","DOIUrl":null,"url":null,"abstract":"Twitter is one of the largest and most popular social networking sites. While it has many interesting features, Twitter has no direct way to determine the relationship status between users. For example, unlike other social networks (e.g., Facebook), Twitter does not have any features for marking users as friends. In this paper, we present AffinityFinder, a system for automatically inferring potential friendship relationships (in terms of affinity) amongst Twitter users. The system collects and analyzes tweets to derive relationship scores that reflect affinity degrees amongst Twitter users. We implemented our tool using the TextBlob Python text processing library and the MongoDB database. Our evaluation shows that the system is able to derive potential friendship relationships with high accuracy. This system could provide useful data both to users and companies.","PeriodicalId":441441,"journal":{"name":"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/W-FiCloud.2016.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Twitter is one of the largest and most popular social networking sites. While it has many interesting features, Twitter has no direct way to determine the relationship status between users. For example, unlike other social networks (e.g., Facebook), Twitter does not have any features for marking users as friends. In this paper, we present AffinityFinder, a system for automatically inferring potential friendship relationships (in terms of affinity) amongst Twitter users. The system collects and analyzes tweets to derive relationship scores that reflect affinity degrees amongst Twitter users. We implemented our tool using the TextBlob Python text processing library and the MongoDB database. Our evaluation shows that the system is able to derive potential friendship relationships with high accuracy. This system could provide useful data both to users and companies.
AffinityFinder:一个利用情感分析在Twitter上派生隐藏亲和关系的系统
Twitter是最大、最受欢迎的社交网站之一。虽然Twitter有许多有趣的功能,但它没有直接的方法来确定用户之间的关系状态。例如,与其他社交网络(如Facebook)不同,Twitter没有任何将用户标记为好友的功能。在本文中,我们提出AffinityFinder,这是一个自动推断Twitter用户之间潜在友谊关系(根据亲和力)的系统。该系统收集并分析推文,得出反映推特用户之间亲和程度的关系分数。我们使用TextBlob Python文本处理库和MongoDB数据库实现了我们的工具。我们的评估表明,该系统能够以很高的准确性推导出潜在的友谊关系。该系统可以为用户和企业提供有用的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信