Architectural Patterns for Cross-Domain Personalised Automotive Functions

Stefan Kugele, Christoph Segler, T. Hubregtsen
{"title":"Architectural Patterns for Cross-Domain Personalised Automotive Functions","authors":"Stefan Kugele, Christoph Segler, T. Hubregtsen","doi":"10.1109/ICSA47634.2020.00026","DOIUrl":null,"url":null,"abstract":"Context: Future automotive customer functions will be highly personalisable and adapt their settings proactively in an intelligent way. Aim: We aim at designing generic architectural patterns for functional architectures containing machine learning components. Method: We first formalise a new architectural model. Based on this model, we present and discuss three alternative architectural patterns: (1) concurrent learning, (2) end-to-end learning, and (3) user shadow learning. For these patterns, three alternative integration approaches are discussed: (i) centralised holistic approach, (ii) domain-specific approach, and (iii) dedicated approach. Moreover, we conduct an evaluation using real car data for different customer functions. Conclusion: We propose the use of the user shadow learning pattern in the dynamic architectural model. The user shadow learning pattern is not affected by safety constraints, as is usually the case for integrating artificial intelligence, as it only models user behaviour while leaving the original function intact. To integrate the multitude of models, we propose a domain-specific approach. This approach provides a balance between the trade-offs in the dedicated approach and the holistic approach, being high computational overhead and design complexity, respectively.","PeriodicalId":136997,"journal":{"name":"2020 IEEE International Conference on Software Architecture (ICSA)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Software Architecture (ICSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA47634.2020.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Context: Future automotive customer functions will be highly personalisable and adapt their settings proactively in an intelligent way. Aim: We aim at designing generic architectural patterns for functional architectures containing machine learning components. Method: We first formalise a new architectural model. Based on this model, we present and discuss three alternative architectural patterns: (1) concurrent learning, (2) end-to-end learning, and (3) user shadow learning. For these patterns, three alternative integration approaches are discussed: (i) centralised holistic approach, (ii) domain-specific approach, and (iii) dedicated approach. Moreover, we conduct an evaluation using real car data for different customer functions. Conclusion: We propose the use of the user shadow learning pattern in the dynamic architectural model. The user shadow learning pattern is not affected by safety constraints, as is usually the case for integrating artificial intelligence, as it only models user behaviour while leaving the original function intact. To integrate the multitude of models, we propose a domain-specific approach. This approach provides a balance between the trade-offs in the dedicated approach and the holistic approach, being high computational overhead and design complexity, respectively.
跨领域个性化汽车功能的体系结构模式
背景:未来的汽车客户功能将高度个性化,并以智能的方式主动调整其设置。目标:我们的目标是为包含机器学习组件的功能架构设计通用架构模式。方法:我们首先形式化一个新的体系结构模型。基于此模型,我们提出并讨论了三种可选的体系结构模式:(1)并发学习,(2)端到端学习,以及(3)用户影子学习。对于这些模式,讨论了三种可选的集成方法:(i)集中式整体方法,(ii)特定于领域的方法,以及(iii)专用方法。此外,我们使用真实的汽车数据对不同的客户功能进行了评估。结论:我们建议在动态建筑模型中使用用户影子学习模式。用户影子学习模式不受安全约束的影响,这通常是集成人工智能的情况,因为它只模拟用户行为,而保持原始功能不变。为了集成大量的模型,我们提出了一种特定于领域的方法。这种方法在专用方法和整体方法之间提供了一种平衡,分别是高计算开销和设计复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信