A multiscale/sparse representation for Diffusion Weighted Imaging (DWI) super-resolution

J. Tarquino, A. Rueda, E. Romero
{"title":"A multiscale/sparse representation for Diffusion Weighted Imaging (DWI) super-resolution","authors":"J. Tarquino, A. Rueda, E. Romero","doi":"10.1109/ISBI.2014.6868037","DOIUrl":null,"url":null,"abstract":"Spatial resolution of Diffusion Weighted (DW) images is currently limited by diverse considerations. This situation introduces a series of artifacts, such as the partial volume effect (PVE), that therefore affect the sensitivity of DW imaging analysis. In this paper, a new multiscale/sparse super-resolution method increases the spatial resolution of the DW images. Based on the redundancy presented in this kind of images, the proposed method uses local information and the multiscale shearlet transformation to closely approach the DW image acquisition process. A comparison of this proposal with a classical image interpolation method demonstrates an improvement of 2.27 dB in the PSNR measure and 1.67% in the SSIM metric.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spatial resolution of Diffusion Weighted (DW) images is currently limited by diverse considerations. This situation introduces a series of artifacts, such as the partial volume effect (PVE), that therefore affect the sensitivity of DW imaging analysis. In this paper, a new multiscale/sparse super-resolution method increases the spatial resolution of the DW images. Based on the redundancy presented in this kind of images, the proposed method uses local information and the multiscale shearlet transformation to closely approach the DW image acquisition process. A comparison of this proposal with a classical image interpolation method demonstrates an improvement of 2.27 dB in the PSNR measure and 1.67% in the SSIM metric.
扩散加权成像(DWI)超分辨率的多尺度/稀疏表示
扩散加权(DW)图像的空间分辨率目前受到各种因素的限制。这种情况引入了一系列伪影,例如部分体积效应(PVE),从而影响DW成像分析的灵敏度。本文提出了一种新的多尺度/稀疏超分辨率方法,提高了DW图像的空间分辨率。基于这类图像的冗余性,该方法利用局部信息和多尺度shearlet变换紧密接近DW图像的获取过程。通过与经典图像插值方法的比较,该方法的PSNR和SSIM分别提高了2.27 dB和1.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信