Symmetric polynomials in the transfer matrix scaling

Y. Belyayev
{"title":"Symmetric polynomials in the transfer matrix scaling","authors":"Y. Belyayev","doi":"10.1109/DD.2013.6712796","DOIUrl":null,"url":null,"abstract":"The new method of the matrix exponential exp (Wz) computation is based on the use of symmetric polynomials of n-th order in combination with scaling matrix W. Calculation algorithm uses a new type of recurrence relations, which were obtained for symmetric polynomials. Evaluation of the scaling parameter, which provides a reliable calculation of the matrix exponential with admissible truncation error, is made. Method of minimizing roundoff errors in the calculation of high powers of matrices is suggested.","PeriodicalId":340014,"journal":{"name":"Proceedings of the International Conference Days on Diffraction 2013","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference Days on Diffraction 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2013.6712796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The new method of the matrix exponential exp (Wz) computation is based on the use of symmetric polynomials of n-th order in combination with scaling matrix W. Calculation algorithm uses a new type of recurrence relations, which were obtained for symmetric polynomials. Evaluation of the scaling parameter, which provides a reliable calculation of the matrix exponential with admissible truncation error, is made. Method of minimizing roundoff errors in the calculation of high powers of matrices is suggested.
对称多项式在传递矩阵中的缩放
矩阵指数exp (Wz)计算的新方法是利用n阶对称多项式与标度矩阵w相结合的方法。计算算法采用了一种新的递归关系,该递归关系是对对称多项式得到的。对标度参数进行了评估,从而在允许截断误差的情况下提供了矩阵指数的可靠计算。提出了在计算高次矩阵时减小舍入误差的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信