Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency

O. Bodini, M. Dien, Antoine Genitrini, F. Peschanski
{"title":"Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency","authors":"O. Bodini, M. Dien, Antoine Genitrini, F. Peschanski","doi":"10.46298/dmtcs.5820","DOIUrl":null,"url":null,"abstract":"International audience\n \n In this paper we address the problem of understanding Concurrency Theory from a combinatorial point of view. We are interested in quantitative results and algorithmic tools to refine our understanding of the classical combinatorial explosion phenomenon arising in concurrency. This paper is essentially focusing on the the notion of synchronization from the point of view of combinatorics. As a first step, we address the quantitative problem of counting the number of executions of simple processes interacting with synchronization barriers. We elaborate a systematic decomposition of processes that produces a symbolic integral formula to solve the problem. Based on this procedure, we develop a generic algorithm to generate process executions uniformly at random. For some interesting sub-classes of processes we propose very efficient counting and random sampling algorithms. All these algorithms have one important characteristic in common: they work on the control graph of processes and thus do not require the explicit construction of the state-space.\n","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.5820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

International audience In this paper we address the problem of understanding Concurrency Theory from a combinatorial point of view. We are interested in quantitative results and algorithmic tools to refine our understanding of the classical combinatorial explosion phenomenon arising in concurrency. This paper is essentially focusing on the the notion of synchronization from the point of view of combinatorics. As a first step, we address the quantitative problem of counting the number of executions of simple processes interacting with synchronization barriers. We elaborate a systematic decomposition of processes that produces a symbolic integral formula to solve the problem. Based on this procedure, we develop a generic algorithm to generate process executions uniformly at random. For some interesting sub-classes of processes we propose very efficient counting and random sampling algorithms. All these algorithms have one important characteristic in common: they work on the control graph of processes and thus do not require the explicit construction of the state-space.
并发中屏障同步的定量和算法方面
在本文中,我们从组合的角度来解决并发理论的理解问题。我们对定量结果和算法工具感兴趣,以改进我们对并发中产生的经典组合爆炸现象的理解。本文主要从组合学的角度讨论同步的概念。作为第一步,我们解决了计算与同步屏障交互的简单进程的执行次数的定量问题。我们详细阐述了一个系统的过程分解,产生一个符号积分公式来解决这个问题。在此基础上,我们开发了一种通用算法来均匀随机地生成进程执行。对于一些有趣的子类,我们提出了非常有效的计数和随机抽样算法。所有这些算法都有一个重要的共同点:它们都在过程的控制图上工作,因此不需要显式地构建状态空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信