{"title":"Periodic quick test for classifying long-term activities","authors":"Pekka Siirtola, Heli Koskimäki, J. Röning","doi":"10.1109/CIDM.2011.5949426","DOIUrl":null,"url":null,"abstract":"A novel method to classify long-term human activities is presented in this study. The method consists of two parts: quick test and periodic classification. The quick test uses temporal information to improve recognition accuracy, while the periodic classification is based on the assumption that recognized activities are long-term. Periodic quick test (PQT) classification was tested using a data set consisting of six long-term sports exercises. The data were collected from six persons wearing a two-dimensional accelerometer on their wrist. The results show that the presented method is not only faster than a normal method, that does not use temporal information and does not assume that activities are long-term, but also more accurate. The results were compared with a normal sliding window technique which divides signal into smaller sequences and classifies each sequence into one of the six classes. The classification accuracy using a normal method was around 84% while using PQT the recognition rate was over 90%. In addition, the number of classified sequences using a normal method was over six times higher than using PQT.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A novel method to classify long-term human activities is presented in this study. The method consists of two parts: quick test and periodic classification. The quick test uses temporal information to improve recognition accuracy, while the periodic classification is based on the assumption that recognized activities are long-term. Periodic quick test (PQT) classification was tested using a data set consisting of six long-term sports exercises. The data were collected from six persons wearing a two-dimensional accelerometer on their wrist. The results show that the presented method is not only faster than a normal method, that does not use temporal information and does not assume that activities are long-term, but also more accurate. The results were compared with a normal sliding window technique which divides signal into smaller sequences and classifies each sequence into one of the six classes. The classification accuracy using a normal method was around 84% while using PQT the recognition rate was over 90%. In addition, the number of classified sequences using a normal method was over six times higher than using PQT.