Iterative re-weighted L1-norm principal-component analysis

Y. Liu, D. Pados, S. Batalama, M. Medley
{"title":"Iterative re-weighted L1-norm principal-component analysis","authors":"Y. Liu, D. Pados, S. Batalama, M. Medley","doi":"10.1109/ACSSC.2017.8335373","DOIUrl":null,"url":null,"abstract":"We consider the problem of principal-component analysis of a given set of data samples. When the data set contains faulty measurements/outliers, the performance of classic L2 principal-component analysis (L2-PCA) deteriorates drastically. Instead, L1 principal-component analysis (L1-PCA) offers outlier resistance due to the L1-norm maximization criterion it adopts to compute the principal subspace. In this work, we present an iterative re-weighted L1-PCA method (IRW L1-PCA) that generates a sequence of Li-norm subspaces. In each iteration, the data set comformity of each sample is measured by the L1 subspace calculated in the previous iteration and used to weigh the data sample before the L1 subspace update. The approach automatically suppresses outliers in each iteration resulting in increasingly accurate subspace calculation. We provide convergence analysis and compare the proposed algorithm against benchmark algorithms in the literature. Experimental studies demonstrate the superiority of the proposed IRW L1-PCA procedure.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the problem of principal-component analysis of a given set of data samples. When the data set contains faulty measurements/outliers, the performance of classic L2 principal-component analysis (L2-PCA) deteriorates drastically. Instead, L1 principal-component analysis (L1-PCA) offers outlier resistance due to the L1-norm maximization criterion it adopts to compute the principal subspace. In this work, we present an iterative re-weighted L1-PCA method (IRW L1-PCA) that generates a sequence of Li-norm subspaces. In each iteration, the data set comformity of each sample is measured by the L1 subspace calculated in the previous iteration and used to weigh the data sample before the L1 subspace update. The approach automatically suppresses outliers in each iteration resulting in increasingly accurate subspace calculation. We provide convergence analysis and compare the proposed algorithm against benchmark algorithms in the literature. Experimental studies demonstrate the superiority of the proposed IRW L1-PCA procedure.
迭代重加权l1范数主成分分析
我们考虑一组给定数据样本的主成分分析问题。当数据集包含错误的测量值/异常值时,经典的L2主成分分析(L2- pca)的性能急剧下降。相反,L1主成分分析(L1- pca)由于采用L1范数最大化准则来计算主子空间,因此提供了离群值阻力。在这项工作中,我们提出了一种迭代重加权L1-PCA方法(IRW L1-PCA),该方法生成了li -范数子空间序列。在每次迭代中,通过前一次迭代计算的L1子空间来度量每个样本的数据集一致性,并在L1子空间更新之前用于对数据样本进行加权。该方法在每次迭代中自动抑制异常值,从而提高子空间计算的精度。我们提供收敛性分析,并将所提出的算法与文献中的基准算法进行比较。实验研究证明了irwl1 - pca方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信