Some results on L/sub 1/ convergence rate of RBF networks and kernel regression estimators

A. Krzyżak, L. Xu
{"title":"Some results on L/sub 1/ convergence rate of RBF networks and kernel regression estimators","authors":"A. Krzyżak, L. Xu","doi":"10.1109/ICNN.1994.374356","DOIUrl":null,"url":null,"abstract":"Rather than studying the L/sub 2/ convergence rates of kernel regression estimators (KRE) and radial basis function (RBF) nets given in Xu-Krzyzak-Yuille (1992 & 1993), we study convergence properties of the mean integrated absolute error (MIAE) for KRE and RBF nets. It has been shown that MIAE of KRE and RBF nets can converge to zero as the size of networks and the size of the training sequence tend to /spl infin/, and that the upper bound for the convergence rate of MIAE is O(n-/sup /spl alpha/s/sub (2+s)/( /sub 2//spl alpha/+d)/) for approximating Lipschitz functions.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rather than studying the L/sub 2/ convergence rates of kernel regression estimators (KRE) and radial basis function (RBF) nets given in Xu-Krzyzak-Yuille (1992 & 1993), we study convergence properties of the mean integrated absolute error (MIAE) for KRE and RBF nets. It has been shown that MIAE of KRE and RBF nets can converge to zero as the size of networks and the size of the training sequence tend to /spl infin/, and that the upper bound for the convergence rate of MIAE is O(n-/sup /spl alpha/s/sub (2+s)/( /sub 2//spl alpha/+d)/) for approximating Lipschitz functions.<>
RBF网络的L/sub 1/收敛速率和核回归估计的一些结果
本文不是研究Xu-Krzyzak-Yuille(1992 & 1993)给出的核回归估计器(KRE)和径向基函数(RBF)网络的L/sub /收敛率,而是研究KRE和RBF网络的平均积分绝对误差(MIAE)的收敛性质。结果表明,当网络的规模和训练序列的规模趋近于/spl infin/时,KRE和RBF网络的MIAE收敛于零,逼近Lipschitz函数时,MIAE收敛速率的上界为O(n-/sup /spl alpha/s/sub (2+s)/(/sub 2//spl alpha/+d)/)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信