{"title":"Network-Wide Traffic States Imputation Using Self-interested Coalitional Learning","authors":"Huiling Qin, Xianyuan Zhan, Yuanxun Li, Xiaodu Yang, Yu Zheng","doi":"10.1145/3447548.3467424","DOIUrl":null,"url":null,"abstract":"Accurate network-wide traffic state estimation is vital to many transportation operations and urban applications. However, existing methods often suffer from the scalability issue when performing real-time inference at the city-level, or not robust enough under limited data. Currently, GPS trajectory data from probe vehicles has become a popular data source for many transportation applications. GPS trajectory data has large coverage area, which is ideal for network-wide applications, but also has the disadvantage of being sparse and highly heterogeneous among different time and locations. In this study, we focus on developing a robust and interpretable network-wide traffic state imputation framework using partially observed traffic information. We introduce a new learning strategy, called self-interested coalitional learning (SCL), which forges cooperation between a main self-interested semi-supervised learning task and a discriminator as a critic to facilitate main task training while providing interpretability on the results. In our detailed model, we use a temporal graph convolutional variational autoencoder (TG-VAE) as the reconstructor, which models the complex spatio-temporal pattern in data and solves the main traffic state imputation task. A discriminator is introduced to output interpretable imputation confidence on the estimated results and also help to enhance the performance of the reconstructor. The framework is evaluated using a large GPS trajectory dataset from taxis in Jinan, China. Extensive experiments against the state-of-the-art baselines demonstrate the effectiveness and robustness of the proposed method for network-wide traffic state estimation.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Accurate network-wide traffic state estimation is vital to many transportation operations and urban applications. However, existing methods often suffer from the scalability issue when performing real-time inference at the city-level, or not robust enough under limited data. Currently, GPS trajectory data from probe vehicles has become a popular data source for many transportation applications. GPS trajectory data has large coverage area, which is ideal for network-wide applications, but also has the disadvantage of being sparse and highly heterogeneous among different time and locations. In this study, we focus on developing a robust and interpretable network-wide traffic state imputation framework using partially observed traffic information. We introduce a new learning strategy, called self-interested coalitional learning (SCL), which forges cooperation between a main self-interested semi-supervised learning task and a discriminator as a critic to facilitate main task training while providing interpretability on the results. In our detailed model, we use a temporal graph convolutional variational autoencoder (TG-VAE) as the reconstructor, which models the complex spatio-temporal pattern in data and solves the main traffic state imputation task. A discriminator is introduced to output interpretable imputation confidence on the estimated results and also help to enhance the performance of the reconstructor. The framework is evaluated using a large GPS trajectory dataset from taxis in Jinan, China. Extensive experiments against the state-of-the-art baselines demonstrate the effectiveness and robustness of the proposed method for network-wide traffic state estimation.