{"title":"Hierarchical Tensor Approximation of Multidimensional Images","authors":"Qing Wu, Tian Xia, Yizhou Yu","doi":"10.1109/ICIP.2007.4379951","DOIUrl":null,"url":null,"abstract":"Visual data comprises of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop an adaptive data approximation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional image is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a collective tensor approximation technique. Experimental results indicate that our technique can achieve higher compression ratios than existing functional approximation methods, including wavelet transforms, wavelet packet transforms and single-level tensor approximation.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Visual data comprises of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop an adaptive data approximation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional image is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a collective tensor approximation technique. Experimental results indicate that our technique can achieve higher compression ratios than existing functional approximation methods, including wavelet transforms, wavelet packet transforms and single-level tensor approximation.