Lung Segmentation for Chest Radiograph by Using Adaptive Active Shape Models

Jiann-Shu Lee, Hsing-Hsien Wu, Ming-Zheng Yuan
{"title":"Lung Segmentation for Chest Radiograph by Using Adaptive Active Shape Models","authors":"Jiann-Shu Lee, Hsing-Hsien Wu, Ming-Zheng Yuan","doi":"10.1109/IAS.2009.353","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed an automatic lung segmentation method. We designed a ROI based method to estimate a proper initial lung boundary for ASM deformation by deriving the translation and the scaling parameters from the lung ROI. An adaptive ASM, using k-means clustering and silhouette-based cluster validation technique, was proposed to adapt to the lung shape change so that the lung shape variation among people can be overwhelmed. The experiments indicated that the segmentation performance of the adaptive ASM is superior to the traditional ASM approaches.","PeriodicalId":240354,"journal":{"name":"2009 Fifth International Conference on Information Assurance and Security","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we proposed an automatic lung segmentation method. We designed a ROI based method to estimate a proper initial lung boundary for ASM deformation by deriving the translation and the scaling parameters from the lung ROI. An adaptive ASM, using k-means clustering and silhouette-based cluster validation technique, was proposed to adapt to the lung shape change so that the lung shape variation among people can be overwhelmed. The experiments indicated that the segmentation performance of the adaptive ASM is superior to the traditional ASM approaches.
基于自适应活动形状模型的胸片肺分割
本文提出了一种自动肺分割方法。我们设计了一种基于ROI的方法,通过肺ROI的平移和缩放参数来估计ASM变形的初始肺边界。采用k-means聚类和基于轮廓的聚类验证技术,提出了一种适应肺形状变化的自适应ASM,以克服人们之间肺形状的变化。实验表明,自适应ASM的分割性能优于传统的ASM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信