On the trellis structure of block codes

F. Kschischang, V. Sorokine
{"title":"On the trellis structure of block codes","authors":"F. Kschischang, V. Sorokine","doi":"10.1109/ISIT.1994.394681","DOIUrl":null,"url":null,"abstract":"Two main results will be presented: 1. The problem of minimizing the number of states in the trellis for a general (nonlinear) code at a given time index is NP-complete, and thus apparently computationally infeasible for large codes. 2. Minimal linear block code trellises correspond to configurations of non-attacking rooks on a triangular chess board. This correspondence can be used to enumerate the minimal trellises, and also to obtain insight into various bounds on the size of the trellises.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"191","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 191

Abstract

Two main results will be presented: 1. The problem of minimizing the number of states in the trellis for a general (nonlinear) code at a given time index is NP-complete, and thus apparently computationally infeasible for large codes. 2. Minimal linear block code trellises correspond to configurations of non-attacking rooks on a triangular chess board. This correspondence can be used to enumerate the minimal trellises, and also to obtain insight into various bounds on the size of the trellises.<>
论分组码的格子结构
将提出两个主要结果:1。对于一般(非线性)代码,在给定时间索引下最小化网格中状态数的问题是np完全的,因此对于大型代码显然在计算上是不可行的。2. 最小线性分组代码格列对应于三角形棋盘上非攻击白嘴鸦的配置。这种对应关系可用于枚举最小格架,也可用于深入了解格架大小的各种界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信