Temperature Prediction of Automotive Battery Systems under Realistic Driving Conditions using Artificial Neural Networks

Johannes Liebertseder, Susann Wunsch, Christine Sonner, L. Berg, M. Doppelbauer, J. Tübke
{"title":"Temperature Prediction of Automotive Battery Systems under Realistic Driving Conditions using Artificial Neural Networks","authors":"Johannes Liebertseder, Susann Wunsch, Christine Sonner, L. Berg, M. Doppelbauer, J. Tübke","doi":"10.1109/CogMob55547.2022.10118237","DOIUrl":null,"url":null,"abstract":"The accurate prediction of the battery temperature in an electric vehicle is crucial for an effective thermal management of the battery system. Here, a nonlinear autoregressive exogenous network is used to model the complex thermal behavior of a battery cell. It is trained with conventional driving data and uses input parameters that are easy to obtain. Its accuracy is proven for a wide range of temperatures, showing the simple, general and robust applicability of the approach.","PeriodicalId":430975,"journal":{"name":"2022 IEEE 1st International Conference on Cognitive Mobility (CogMob)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 1st International Conference on Cognitive Mobility (CogMob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMob55547.2022.10118237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate prediction of the battery temperature in an electric vehicle is crucial for an effective thermal management of the battery system. Here, a nonlinear autoregressive exogenous network is used to model the complex thermal behavior of a battery cell. It is trained with conventional driving data and uses input parameters that are easy to obtain. Its accuracy is proven for a wide range of temperatures, showing the simple, general and robust applicability of the approach.
基于人工神经网络的现实驾驶条件下汽车电池系统温度预测
电动汽车电池温度的准确预测对于电池系统的有效热管理至关重要。本文采用非线性自回归外源网络对电池的复杂热行为进行建模。它使用传统的驾驶数据进行训练,并使用易于获得的输入参数。它的准确性在很宽的温度范围内被证明,显示了该方法的简单,通用和强大的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信