Grading System Prediction of Educational Performance Analysis Using Data Mining Approach

Mahfujur Rahman, Madina Hasan, Md Masum Billah, Rukaiya Jahan Sajuti
{"title":"Grading System Prediction of Educational Performance Analysis Using Data Mining Approach","authors":"Mahfujur Rahman, Madina Hasan, Md Masum Billah, Rukaiya Jahan Sajuti","doi":"10.56532/mjsat.v2i4.96","DOIUrl":null,"url":null,"abstract":"In the neoteric century, education holds the key to bringing tremendous upgradation to the world. In most Asian countries, it is very challenging to apply education data mining techniques due to the variety of institutional data categories. In this research, an efficient data collection technique has been designed to gather institutional data, analyse and pre-process the data and apply specific data mining methods to estimate students’ progress. A real-time dataset has been designed from student transcript data, which helps to analyse the prediction of student quality. In our research, six traditional classification algorithms and a deep neural network (DNN) model is applied to perform prediction efficiency. Different classification models perform an accuracy of 90% ~ 94%. Our research predicts student education efficiency, analyses student patterns and introduces a generalized framework for an advanced level of study.","PeriodicalId":407405,"journal":{"name":"Malaysian Journal of Science and Advanced Technology","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Science and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56532/mjsat.v2i4.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the neoteric century, education holds the key to bringing tremendous upgradation to the world. In most Asian countries, it is very challenging to apply education data mining techniques due to the variety of institutional data categories. In this research, an efficient data collection technique has been designed to gather institutional data, analyse and pre-process the data and apply specific data mining methods to estimate students’ progress. A real-time dataset has been designed from student transcript data, which helps to analyse the prediction of student quality. In our research, six traditional classification algorithms and a deep neural network (DNN) model is applied to perform prediction efficiency. Different classification models perform an accuracy of 90% ~ 94%. Our research predicts student education efficiency, analyses student patterns and introduces a generalized framework for an advanced level of study.
基于数据挖掘方法的教育成绩分析评分系统预测
在新世纪,教育是给世界带来巨大升级的关键。在大多数亚洲国家,由于机构数据类别的多样性,应用教育数据挖掘技术非常具有挑战性。在本研究中,设计了一种有效的数据收集技术,用于收集机构数据,分析和预处理数据,并应用特定的数据挖掘方法来估计学生的进步。利用学生成绩单数据设计了一个实时数据集,有助于学生素质的分析预测。在我们的研究中,采用了六种传统的分类算法和一个深度神经网络(DNN)模型来实现预测效率。不同分类模型的准确率在90% ~ 94%之间。我们的研究预测了学生的教育效率,分析了学生的模式,并为提高学习水平引入了一个通用的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信