Laplacian one class extreme learning machines for human action recognition

V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas
{"title":"Laplacian one class extreme learning machines for human action recognition","authors":"V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas","doi":"10.1109/MMSP.2016.7813387","DOIUrl":null,"url":null,"abstract":"A novel OCC method for human action recognition namely the Laplacian One Class Extreme Learning Machines is presented. The proposed method exploits local geometric data information within the OC-ELM optimization process. It is shown that emphasizing on preserving the local geometry of the data leads to a regularized solution, which models the target class more efficiently than the standard OC-ELM algorithm. The proposed method is extended to operate in feature spaces determined by the network hidden layer outputs, as well as in ELM spaces of arbitrary dimensions. Its superior performance against other OCC options is consistent among five publicly available human action recognition datasets.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel OCC method for human action recognition namely the Laplacian One Class Extreme Learning Machines is presented. The proposed method exploits local geometric data information within the OC-ELM optimization process. It is shown that emphasizing on preserving the local geometry of the data leads to a regularized solution, which models the target class more efficiently than the standard OC-ELM algorithm. The proposed method is extended to operate in feature spaces determined by the network hidden layer outputs, as well as in ELM spaces of arbitrary dimensions. Its superior performance against other OCC options is consistent among five publicly available human action recognition datasets.
用于人类行为识别的拉普拉斯一类极限学习机
提出了一种新的用于人体动作识别的OCC方法——拉普拉斯一类极限学习机。该方法利用OC-ELM优化过程中的局部几何数据信息。结果表明,强调保留数据的局部几何形状可以得到正则化解,这比标准的OC-ELM算法更有效地建模目标类。将该方法扩展到由网络隐藏层输出决定的特征空间,以及任意维的ELM空间。其优于其他OCC选项的性能在五个公开可用的人类动作识别数据集中是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信