A dual belief propagation method for shape recognition

P. Tipwai, S. Madarasmi
{"title":"A dual belief propagation method for shape recognition","authors":"P. Tipwai, S. Madarasmi","doi":"10.1109/CIIP.2009.4937886","DOIUrl":null,"url":null,"abstract":"We present a shape recognition framework which includes two steps: shape searching and shape matching by deformation. First, the user can draw a contour shape descriptor as a search template. The first Bayesian belief propagation (BP I) algorithm is used to find possible targets allowing for translation, scale, and rotation transformations to all contours in a cluttered image. The contour segments with common transformation values are grouped and hypothesized as belonging to the contour in the search template. The search template is then transformed for each possible transformation value. A second belief propagation (BP II) is applied to perform a deformable contour matching. The matching score or cost function determines whether there is an actual match. The algorithm overcomes the weaknesses of the other approaches since it does not require any pre-processing to detect feature points, it can match targets at any position, scale, or rotation transformations, and it does not use any accumulation space that my have peak clustering problems such as in the Hough Transform.","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a shape recognition framework which includes two steps: shape searching and shape matching by deformation. First, the user can draw a contour shape descriptor as a search template. The first Bayesian belief propagation (BP I) algorithm is used to find possible targets allowing for translation, scale, and rotation transformations to all contours in a cluttered image. The contour segments with common transformation values are grouped and hypothesized as belonging to the contour in the search template. The search template is then transformed for each possible transformation value. A second belief propagation (BP II) is applied to perform a deformable contour matching. The matching score or cost function determines whether there is an actual match. The algorithm overcomes the weaknesses of the other approaches since it does not require any pre-processing to detect feature points, it can match targets at any position, scale, or rotation transformations, and it does not use any accumulation space that my have peak clustering problems such as in the Hough Transform.
一种用于形状识别的双信念传播方法
提出了一种形状识别框架,该框架包括形状搜索和变形匹配两个步骤。首先,用户可以绘制轮廓形状描述符作为搜索模板。第一种贝叶斯信念传播(BP I)算法用于寻找可能的目标,允许对混乱图像中的所有轮廓进行平移、缩放和旋转变换。对具有相同变换值的轮廓段进行分组,并假设其属于搜索模板中的轮廓。然后针对每个可能的转换值对搜索模板进行转换。采用二次信念传播(BP II)进行可变形轮廓匹配。匹配分数或成本函数决定是否存在实际匹配。该算法克服了其他方法的缺点,因为它不需要任何预处理来检测特征点,它可以在任何位置,尺度或旋转变换下匹配目标,并且它不使用任何积累空间,而这些空间可能存在霍夫变换中存在的峰值聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信