An effective extension to okapi for biomedical text mining

Ming Zhong, Xiangji Huang
{"title":"An effective extension to okapi for biomedical text mining","authors":"Ming Zhong, Xiangji Huang","doi":"10.1109/GRC.2006.1635878","DOIUrl":null,"url":null,"abstract":"In biomedical text mining domain, a challenging problem is to identify the biological entity which has multiple forms of name. For this reason, the traditional IR system usually does not have a good performance. We propose an extension to Okapi information retrieval system so that it has the ability to identify the biological entity with multiple lexical variants. This extension integrates the Okapi system, an automatic query expansion algorithm and a new method for transforming a topic written in natural language into a structured query. Experiments on both 2004 and 2005 TREC Genomics data sets show that the proposed extension to Okapi is effective and competitive.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In biomedical text mining domain, a challenging problem is to identify the biological entity which has multiple forms of name. For this reason, the traditional IR system usually does not have a good performance. We propose an extension to Okapi information retrieval system so that it has the ability to identify the biological entity with multiple lexical variants. This extension integrates the Okapi system, an automatic query expansion algorithm and a new method for transforming a topic written in natural language into a structured query. Experiments on both 2004 and 2005 TREC Genomics data sets show that the proposed extension to Okapi is effective and competitive.
生物医学文本挖掘中对霍加皮的有效扩展
在生物医学文本挖掘领域,识别具有多种名称形式的生物实体是一个具有挑战性的问题。因此,传统的红外系统通常没有很好的性能。我们提出了一个扩展霍加皮信息检索系统,使其具有识别具有多种词法变体的生物实体的能力。这个扩展集成了Okapi系统,自动查询扩展算法和将自然语言编写的主题转换为结构化查询的新方法。在2004年和2005年TREC Genomics数据集上的实验表明,提出的对霍加皮的扩展是有效的和有竞争力的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信