Partial functions in fitness-shared genetic programming

R. I. McKay
{"title":"Partial functions in fitness-shared genetic programming","authors":"R. I. McKay","doi":"10.1109/CEC.2000.870316","DOIUrl":null,"url":null,"abstract":"Investigates the use of partial functions and fitness sharing in genetic programming. Fitness sharing is applied to populations of either partial or total functions and the results are compared. Applications to two classes of problem are investigated: learning multiplexer definitions, and learning (recursive) list membership functions. In both cases, fitness sharing approaches outperform the use of raw fitness, by generating more accurate solutions with the same population parameters. On the list membership problem, variants using fitness sharing on populations of partial functions outperform variants using total functions, whereas populations of total functions give better performance on some variants of multiplexer problems.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Investigates the use of partial functions and fitness sharing in genetic programming. Fitness sharing is applied to populations of either partial or total functions and the results are compared. Applications to two classes of problem are investigated: learning multiplexer definitions, and learning (recursive) list membership functions. In both cases, fitness sharing approaches outperform the use of raw fitness, by generating more accurate solutions with the same population parameters. On the list membership problem, variants using fitness sharing on populations of partial functions outperform variants using total functions, whereas populations of total functions give better performance on some variants of multiplexer problems.
适应度共享遗传规划中的部分函数
研究了部分函数和适应度共享在遗传规划中的应用。将适应度共享应用于部分或全部函数的总体,并对结果进行比较。研究了两类问题的应用:学习多路器定义和学习(递归)列表隶属函数。在这两种情况下,适应度共享方法都优于使用原始适应度,因为它生成了具有相同总体参数的更准确的解决方案。在列表隶属度问题上,在部分函数总体上使用适应度共享的变量优于使用总体函数的变量,而总体函数总体在多路复用器问题的某些变体上具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信